These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 34183377)

  • 21. Superoxide production by an unusual aldehyde oxidase in guinea pig granulocytes. Characterization and cytochemical localization.
    Badwey JA; Robinson JM; Karnovsky MJ; Karnovsky ML
    J Biol Chem; 1981 Apr; 256(7):3479-86. PubMed ID: 6259169
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Methods for Detection of NOX-Derived Superoxide Radical Anion and Hydrogen Peroxide in Cells.
    Augsburger F; Filippova A; Jaquet V
    Methods Mol Biol; 2019; 1982():233-241. PubMed ID: 31172475
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Time Course of Aldehyde Oxidase and Why It Is Nonlinear.
    Abbasi A; Paragas EM; Joswig-Jones CA; Rodgers JT; Jones JP
    Drug Metab Dispos; 2019 May; 47(5):473-483. PubMed ID: 30787100
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Aldehyde oxidase and its importance in novel drug discovery: present and future challenges.
    Garattini E; Terao M
    Expert Opin Drug Discov; 2013 Jun; 8(6):641-54. PubMed ID: 23565746
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Detection of superoxide anion and hydrogen peroxide production by cellular NADPH oxidases.
    Nauseef WM
    Biochim Biophys Acta; 2014 Feb; 1840(2):757-67. PubMed ID: 23660153
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Catalytic turnover of substrate benzylamines by the quinone-dependent plasma amine oxidase leads to H2O2-dependent inactivation: evidence for generation of a cofactor-derived benzoxazole.
    Lee Y; Shepard E; Smith J; Dooley DM; Sayre LM
    Biochemistry; 2001 Jan; 40(3):822-9. PubMed ID: 11170400
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Characterization of xanthine dehydrogenase and aldehyde oxidase of Marsupenaeus japonicus and their response to microbial pathogen.
    Okamura Y; Inada M; Elshopakey GE; Itami T
    Mol Biol Rep; 2018 Aug; 45(4):419-432. PubMed ID: 29767342
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Induction of reactive oxygen species and the potential role of NADPH oxidase in hyperhydricity of garlic plantlets in vitro.
    Tian J; Cheng Y; Kong X; Liu M; Jiang F; Wu Z
    Protoplasma; 2017 Jan; 254(1):379-388. PubMed ID: 26945990
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Increasing recognition of the importance of aldehyde oxidase in drug development and discovery.
    Garattini E; Terao M
    Drug Metab Rev; 2011 Aug; 43(3):374-86. PubMed ID: 21428696
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Distinct roles of Nox1 and Nox4 in basal and angiotensin II-stimulated superoxide and hydrogen peroxide production.
    Dikalov SI; Dikalova AE; Bikineyeva AT; Schmidt HH; Harrison DG; Griendling KK
    Free Radic Biol Med; 2008 Nov; 45(9):1340-51. PubMed ID: 18760347
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Mechanism of superoxide and hydrogen peroxide formation by fumarate reductase, succinate dehydrogenase, and aspartate oxidase.
    Messner KR; Imlay JA
    J Biol Chem; 2002 Nov; 277(45):42563-71. PubMed ID: 12200425
    [TBL] [Abstract][Full Text] [Related]  

  • 32. High-throughput assays for superoxide and hydrogen peroxide: design of a screening workflow to identify inhibitors of NADPH oxidases.
    Zielonka J; Cheng G; Zielonka M; Ganesh T; Sun A; Joseph J; Michalski R; O'Brien WJ; Lambeth JD; Kalyanaraman B
    J Biol Chem; 2014 Jun; 289(23):16176-89. PubMed ID: 24764302
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The role of aldehyde oxidase in drug metabolism.
    Garattini E; Terao M
    Expert Opin Drug Metab Toxicol; 2012 Apr; 8(4):487-503. PubMed ID: 22335465
    [TBL] [Abstract][Full Text] [Related]  

  • 34. New insights about the monomer and homodimer structures of the human AOX1.
    Ferreira P; Cerqueira NMFSA; Coelho C; Fernandes PA; Romão MJ; Ramos MJ
    Phys Chem Chem Phys; 2019 Jul; 21(25):13545-13554. PubMed ID: 31172995
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The extracellular A-loop of dual oxidases affects the specificity of reactive oxygen species release.
    Ueyama T; Sakuma M; Ninoyu Y; Hamada T; Dupuy C; Geiszt M; Leto TL; Saito N
    J Biol Chem; 2015 Mar; 290(10):6495-506. PubMed ID: 25586178
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Modulation of mitochondrial site-specific hydrogen peroxide efflux by exogenous stressors.
    Okoye CN; Stevens D; Kamunde C
    Free Radic Biol Med; 2021 Feb; 164():439-456. PubMed ID: 33383085
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The mammalian aldehyde oxidase gene family.
    Garattini E; Fratelli M; Terao M
    Hum Genomics; 2009 Dec; 4(2):119-30. PubMed ID: 20038499
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Avian and canine aldehyde oxidases. Novel insights into the biology and evolution of molybdo-flavoenzymes.
    Terao M; Kurosaki M; Barzago MM; Varasano E; Boldetti A; Bastone A; Fratelli M; Garattini E
    J Biol Chem; 2006 Jul; 281(28):19748-61. PubMed ID: 16672219
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The glutathionylation agent disulfiram augments superoxide/hydrogen peroxide production when liver mitochondria are oxidizing ubiquinone pool-linked and branched chain amino acid substrates.
    Hirschenson J; Mailloux RJ
    Free Radic Biol Med; 2021 Aug; 172():1-8. PubMed ID: 34052343
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Hsp90 regulates NADPH oxidase activity and is necessary for superoxide but not hydrogen peroxide production.
    Chen F; Pandey D; Chadli A; Catravas JD; Chen T; Fulton DJ
    Antioxid Redox Signal; 2011 Jun; 14(11):2107-19. PubMed ID: 21194376
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.