BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 3418353)

  • 1. Structural features of human monoamine oxidase A elucidated from cDNA and peptide sequences.
    Hsu YP; Weyler W; Chen S; Sims KB; Rinehart WB; Utterback MC; Powell JF; Breakefield XO
    J Neurochem; 1988 Oct; 51(4):1321-4. PubMed ID: 3418353
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular cloning of a cDNA for rat liver monoamine oxidase B.
    Ito A; Kuwahara T; Inadome S; Sagara Y
    Biochem Biophys Res Commun; 1988 Dec; 157(3):970-6. PubMed ID: 2974701
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of a highly conserved FAD-binding site in human monoamine oxidase B.
    Zhou BP; Wu B; Kwan SW; Abell CW
    J Biol Chem; 1998 Jun; 273(24):14862-8. PubMed ID: 9614088
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of a dinucleotide-binding site in monoamine oxidase B by site-directed mutagenesis.
    Kwan SW; Lewis DA; Zhou BP; Abell CW
    Arch Biochem Biophys; 1995 Jan; 316(1):385-91. PubMed ID: 7840641
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular characteristics of a single and novel form of carp (Cyprinus carpio) monoamine oxidase.
    Sugimoto H; Taguchi YD; Shibata K; Kinemuchi H
    Comp Biochem Physiol B Biochem Mol Biol; 2010 Mar; 155(3):266-71. PubMed ID: 19932189
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Arginine-42 and threonine-45 are required for FAD incorporation and catalytic activity in human monoamine oxidase B.
    Kirksey TJ; Kwan SW; Abell CW
    Biochemistry; 1998 Sep; 37(35):12360-6. PubMed ID: 9724550
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Amine oxidases from Aspergillus niger: identification of a novel flavin-dependent enzyme.
    Schilling B; Lerch K
    Biochim Biophys Acta; 1995 Apr; 1243(3):529-37. PubMed ID: 7727530
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mutagenesis at a highly conserved tyrosine in monoamine oxidase B affects FAD incorporation and catalytic activity.
    Zhou BP; Lewis DA; Kwan SW; Kirksey TJ; Abell CW
    Biochemistry; 1995 Jul; 34(29):9526-31. PubMed ID: 7626622
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Catalytically active monoamine oxidase type A from human liver expressed in Saccharomyces cerevisiae contains covalent FAD.
    Weyler W; Titlow CC; Salach JI
    Biochem Biophys Res Commun; 1990 Dec; 173(3):1205-11. PubMed ID: 2125217
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Primary structure of rat monoamine oxidase A deduced from cDNA and its expression in rat tissues.
    Kuwahara T; Takamoto S; Ito A
    Agric Biol Chem; 1990 Jan; 54(1):253-7. PubMed ID: 1368522
    [TBL] [Abstract][Full Text] [Related]  

  • 11. cDNA cloning and sequencing of rat monoamine oxidase A: comparison with the human and bovine enzymes.
    Kwan SW; Abell CW
    Comp Biochem Physiol B; 1992 May; 102(1):143-7. PubMed ID: 1526120
    [TBL] [Abstract][Full Text] [Related]  

  • 12. cDNA cloning of human liver monoamine oxidase A and B: molecular basis of differences in enzymatic properties.
    Bach AW; Lan NC; Johnson DL; Abell CW; Bembenek ME; Kwan SW; Seeburg PH; Shih JC
    Proc Natl Acad Sci U S A; 1988 Jul; 85(13):4934-8. PubMed ID: 3387449
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Flavinylation of monoamine oxidase B.
    Zhou BP; Lewis DA; Kwan SW; Abell CW
    J Biol Chem; 1995 Oct; 270(40):23653-60. PubMed ID: 7559533
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of FAD structure on its binding and activity with the C406A mutant of recombinant human liver monoamine oxidase A.
    Nandigama RK; Edmondson DE
    J Biol Chem; 2000 Jul; 275(27):20527-32. PubMed ID: 10877844
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-level expression of human liver monoamine oxidase B in Pichia pastoris.
    Newton-Vinson P; Hubalek F; Edmondson DE
    Protein Expr Purif; 2000 Nov; 20(2):334-45. PubMed ID: 11049757
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular characterization of monoamine oxidases A and B.
    Abell CW; Kwan SW
    Prog Nucleic Acid Res Mol Biol; 2001; 65():129-56. PubMed ID: 11008487
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Partial amino acid sequence analysis of human placenta monoamine oxidase A and bovine liver monoamine oxidase B.
    Chen SA; Weyler W
    Biochem Biophys Res Commun; 1988 Oct; 156(1):445-50. PubMed ID: 3178846
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The FAD binding sites of human monoamine oxidases A and B.
    Edmondson DE; Binda C; Mattevi A
    Neurotoxicology; 2004 Jan; 25(1-2):63-72. PubMed ID: 14697881
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structure-based redesign of cofactor binding in putrescine oxidase.
    Kopacz MM; Rovida S; van Duijn E; Fraaije MW; Mattevi A
    Biochemistry; 2011 May; 50(19):4209-17. PubMed ID: 21486042
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The structure of monoamine oxidase from Aspergillus niger provides a molecular context for improvements in activity obtained by directed evolution.
    Atkin KE; Reiss R; Koehler V; Bailey KR; Hart S; Turkenburg JP; Turner NJ; Brzozowski AM; Grogan G
    J Mol Biol; 2008 Dec; 384(5):1218-31. PubMed ID: 18951902
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.