These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

232 related articles for article (PubMed ID: 34183695)

  • 1. Detection of pathological mechano-acoustic signatures using precision accelerometer contact microphones in patients with pulmonary disorders.
    Gupta P; Wen H; Di Francesco L; Ayazi F
    Sci Rep; 2021 Jun; 11(1):13427. PubMed ID: 34183695
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Precision wearable accelerometer contact microphones for longitudinal monitoring of mechano-acoustic cardiopulmonary signals.
    Gupta P; Moghimi MJ; Jeong Y; Gupta D; Inan OT; Ayazi F
    NPJ Digit Med; 2020; 3():19. PubMed ID: 32128449
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Computerized respiratory sounds: a comparison between patients with stable and exacerbated COPD.
    Jácome C; Oliveira A; Marques A
    Clin Respir J; 2017 Sep; 11(5):612-620. PubMed ID: 26403859
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An Accelerometer-Based Wearable Patch for Robust Respiratory Rate and Wheeze Detection Using Deep Learning.
    Sang B; Wen H; Junek G; Neveu W; Di Francesco L; Ayazi F
    Biosensors (Basel); 2024 Feb; 14(3):. PubMed ID: 38534225
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Automatic adventitious respiratory sound analysis: A systematic review.
    Pramono RXA; Bowyer S; Rodriguez-Villegas E
    PLoS One; 2017; 12(5):e0177926. PubMed ID: 28552969
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Computerized lung sound analysis as diagnostic aid for the detection of abnormal lung sounds: a systematic review and meta-analysis.
    Gurung A; Scrafford CG; Tielsch JM; Levine OS; Checkley W
    Respir Med; 2011 Sep; 105(9):1396-403. PubMed ID: 21676606
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Digital stethoscopes compared to standard auscultation for detecting abnormal paediatric breath sounds.
    Kevat AC; Kalirajah A; Roseby R
    Eur J Pediatr; 2017 Jul; 176(7):989-992. PubMed ID: 28508991
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An ultra-sensitive wearable accelerometer for continuous heart and lung sound monitoring.
    Hu Y; Xu Y
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():694-7. PubMed ID: 23365987
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characteristics of Pulmonary Auscultation in Patients with 2019 Novel Coronavirus in China.
    Wang B; Liu Y; Wang Y; Yin W; Liu T; Liu D; Li D; Feng M; Zhang Y; Liang Z; Fu Z; Fu S; Li W; Xiong N; Wang G; Luo F
    Respiration; 2020; 99(9):755-763. PubMed ID: 33147584
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lung and Heart Sounds Analysis: State-of-the-Art and Future Trends.
    Padilla-Ortiz AL; Ibarra D
    Crit Rev Biomed Eng; 2018; 46(1):33-52. PubMed ID: 29717676
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Using K-Nearest Neighbor Classification to Diagnose Abnormal Lung Sounds.
    Chen CH; Huang WT; Tan TH; Chang CC; Chang YJ
    Sensors (Basel); 2015 Jun; 15(6):13132-58. PubMed ID: 26053756
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Practical implementation of artificial intelligence algorithms in pulmonary auscultation examination.
    Grzywalski T; Piecuch M; Szajek M; Bręborowicz A; Hafke-Dys H; Kociński J; Pastusiak A; Belluzzo R
    Eur J Pediatr; 2019 Jun; 178(6):883-890. PubMed ID: 30927097
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Continuous Monitoring Versus Intermittent Auscultation of Wheezes in Patients Presenting With Acute Respiratory Distress.
    Au YK; Muqeem T; Fauveau VJ; Cardenas JA; Geris BS; Hassen GW; Glass M
    J Emerg Med; 2022 Oct; 63(4):582-591. PubMed ID: 36244855
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Portable system for auscultation and lung sound analysis.
    Nabiev R; Glazova A; Olyinik V; Makarenkova A; Makarenkov A; Rakhimov A; Felländer-Tsai L
    Stud Health Technol Inform; 2014; 196():290-3. PubMed ID: 24732524
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Wearable Stethoscope for Long-Term Ambulatory Respiratory Health Monitoring.
    Yilmaz G; Rapin M; Pessoa D; Rocha BM; de Sousa AM; Rusconi R; Carvalho P; Wacker J; Paiva RP; Chételat O
    Sensors (Basel); 2020 Sep; 20(18):. PubMed ID: 32911861
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An automated computerized auscultation and diagnostic system for pulmonary diseases.
    Abbas A; Fahim A
    J Med Syst; 2010 Dec; 34(6):1149-55. PubMed ID: 20703592
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Breath Measurement Method for Synchronized Reproduction of Biological Tones in an Augmented Reality Auscultation Training System.
    Kono Y; Miura K; Kasai H; Ito S; Asahina M; Tanabe M; Nomura Y; Nakaguchi T
    Sensors (Basel); 2024 Mar; 24(5):. PubMed ID: 38475162
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Pulmonary auscultation in the era of evidence-based medicine].
    Reichert S; Gass R; Brandt C; Andrès E
    Rev Mal Respir; 2008 Jun; 25(6):674-82. PubMed ID: 18772825
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Artificial intelligence accuracy in detecting pathological breath sounds in children using digital stethoscopes.
    Kevat A; Kalirajah A; Roseby R
    Respir Res; 2020 Sep; 21(1):253. PubMed ID: 32993620
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Computerized Respiratory Sounds Are a Reliable Marker in Subjects With COPD.
    Jácome C; Marques A
    Respir Care; 2015 Sep; 60(9):1264-75. PubMed ID: 25969514
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.