These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 34183819)

  • 1. Site-selective tyrosine bioconjugation via photoredox catalysis for native-to-bioorthogonal protein transformation.
    Li BX; Kim DK; Bloom S; Huang RY; Qiao JX; Ewing WR; Oblinsky DG; Scholes GD; MacMillan DWC
    Nat Chem; 2021 Sep; 13(9):902-908. PubMed ID: 34183819
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Decarboxylative alkylation for site-selective bioconjugation of native proteins via oxidation potentials.
    Bloom S; Liu C; Kölmel DK; Qiao JX; Zhang Y; Poss MA; Ewing WR; MacMillan DWC
    Nat Chem; 2018 Feb; 10(2):205-211. PubMed ID: 29359756
    [TBL] [Abstract][Full Text] [Related]  

  • 3. General Dialdehyde Click Chemistry for Amine Bioconjugation.
    Elahipanah S; O'Brien PJ; Rogozhnikov D; Yousaf MN
    Bioconjug Chem; 2017 May; 28(5):1422-1433. PubMed ID: 28436674
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inducible, Selective Labeling of Proteins via Enzymatic Oxidation of Tyrosine.
    Bruins JJ; van de Wouw C; Keijzer JF; Albada B; van Delft FL
    Methods Mol Biol; 2019; 2012():357-368. PubMed ID: 31161517
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Photoredox-catalyzed Direct Reductive Amination of Aldehydes without an External Hydrogen/Hydride Source.
    Alam R; Molander GA
    Org Lett; 2018 May; 20(9):2680-2684. PubMed ID: 29652160
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tyrosine specific sequential labeling of proteins.
    Cserép GB; Herner A; Wolfbeis OS; Kele P
    Bioorg Med Chem Lett; 2013 Nov; 23(21):5776-8. PubMed ID: 24075730
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bioorthogonal chemistry for site-specific labeling and surface immobilization of proteins.
    Chen YX; Triola G; Waldmann H
    Acc Chem Res; 2011 Sep; 44(9):762-73. PubMed ID: 21648407
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Site-Selective Labeling of Native Proteins by a Multicomponent Approach.
    Chilamari M; Purushottam L; Rai V
    Chemistry; 2017 Mar; 23(16):3819-3823. PubMed ID: 28177162
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A three-component Mannich-type reaction for selective tyrosine bioconjugation.
    Joshi NS; Whitaker LR; Francis MB
    J Am Chem Soc; 2004 Dec; 126(49):15942-3. PubMed ID: 15584710
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Site-Selective Functionalization of Methionine Residues via Photoredox Catalysis.
    Kim J; Li BX; Huang RY; Qiao JX; Ewing WR; MacMillan DWC
    J Am Chem Soc; 2020 Dec; 142(51):21260-21266. PubMed ID: 33290649
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrochemically Promoted Tyrosine-Click-Chemistry for Protein Labeling.
    Alvarez-Dorta D; Thobie-Gautier C; Croyal M; Bouzelha M; Mével M; Deniaud D; Boujtita M; Gouin SG
    J Am Chem Soc; 2018 Dec; 140(49):17120-17126. PubMed ID: 30422648
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of oxidative coupling strategies for site-selective protein modification.
    ElSohly AM; Francis MB
    Acc Chem Res; 2015 Jul; 48(7):1971-8. PubMed ID: 26057118
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Exploration of C-H Transformations of Aldehyde Hydrazones: Radical Strategies and Beyond.
    Xu P; Li W; Xie J; Zhu C
    Acc Chem Res; 2018 Feb; 51(2):484-495. PubMed ID: 29359909
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Site-selective electrooxidation of methylarenes to aromatic acetals.
    Xiong P; Zhao HB; Fan XT; Jie LH; Long H; Xu P; Liu ZJ; Wu ZJ; Cheng J; Xu HC
    Nat Commun; 2020 Jun; 11(1):2706. PubMed ID: 32483217
    [TBL] [Abstract][Full Text] [Related]  

  • 15. DNA-Templated Introduction of an Aldehyde Handle in Proteins.
    Kodal AL; Rosen CB; Mortensen MR; Tørring T; Gothelf KV
    Chembiochem; 2016 Jul; 17(14):1338-42. PubMed ID: 27168316
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Development and Application of Catalytic Tyrosine Chemical Modification].
    Sato S
    Yakugaku Zasshi; 2019; 139(11):1365-1375. PubMed ID: 31685732
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multifunctional, High Molecular Weight, Post-Translationally Modified Proteins through Oxidative Cysteine Coupling and Tyrosine Modification.
    Seifried BM; Cao J; Olsen BD
    Bioconjug Chem; 2018 Jun; 29(6):1876-1884. PubMed ID: 29786419
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enantioselective α-Alkylation of Aldehydes by Photoredox Organocatalysis: Rapid Access to Pharmacophore Fragments from β-Cyanoaldehydes.
    Welin ER; Warkentin AA; Conrad JC; MacMillan DW
    Angew Chem Int Ed Engl; 2015 Aug; 54(33):9668-72. PubMed ID: 26130043
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thiazolidine-Masked α-Oxo Aldehyde Functionality for Peptide and Protein Modification.
    Bi X; Pasunooti KK; Lescar J; Liu CF
    Bioconjug Chem; 2017 Feb; 28(2):325-329. PubMed ID: 28026933
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Boronic Acids as Bioorthogonal Probes for Site-Selective Labeling of Proteins.
    Akgun B; Hall DG
    Angew Chem Int Ed Engl; 2018 Oct; 57(40):13028-13044. PubMed ID: 29723444
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.