These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

411 related articles for article (PubMed ID: 34184105)

  • 1. Bacterial metal nanoparticles to develop new weapons against bacterial biofilms and infections.
    Gallo G; Schillaci D
    Appl Microbiol Biotechnol; 2021 Jul; 105(13):5357-5366. PubMed ID: 34184105
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evolution of biofilm-forming pathogenic bacteria in the presence of nanoparticles and antibiotic: adaptation phenomena and cross-resistance.
    Mann R; Holmes A; McNeilly O; Cavaliere R; Sotiriou GA; Rice SA; Gunawan C
    J Nanobiotechnology; 2021 Sep; 19(1):291. PubMed ID: 34579731
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hybrid silver-gold nanoparticles suppress drug resistant polymicrobial biofilm formation and intracellular infection.
    Bhatia E; Banerjee R
    J Mater Chem B; 2020 Jun; 8(22):4890-4898. PubMed ID: 32285904
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bisphosphocins: novel antimicrobials for enhanced killing of drug-resistant and biofilm-forming bacteria.
    Wong JP; DiTullio P; Parkinson S
    Future Microbiol; 2015; 10(11):1751-8. PubMed ID: 26597426
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Caffeine-loaded gold nanoparticles: antibiofilm and anti-persister activities against pathogenic bacteria.
    Khan F; Park SK; Bamunuarachchi NI; Oh D; Kim YM
    Appl Microbiol Biotechnol; 2021 May; 105(9):3717-3731. PubMed ID: 33900427
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Antimicrobial and antibiofilm activity of biopolymer-Ni, Zn nanoparticle biocomposites synthesized using
    Garza-Cervantes JA; Escárcega-González CE; Barriga Castro ED; Mendiola-Garza G; Marichal-Cancino BA; López-Vázquez MA; Morones-Ramirez JR
    Int J Nanomedicine; 2019; 14():2557-2571. PubMed ID: 31118605
    [No Abstract]   [Full Text] [Related]  

  • 7. Synthetic molecular evolution of host cell-compatible, antimicrobial peptides effective against drug-resistant, biofilm-forming bacteria.
    Starr CG; Ghimire J; Guha S; Hoffmann JP; Wang Y; Sun L; Landreneau BN; Kolansky ZD; Kilanowski-Doroh IM; Sammarco MC; Morici LA; Wimley WC
    Proc Natl Acad Sci U S A; 2020 Apr; 117(15):8437-8448. PubMed ID: 32241895
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reducing Bacterial Infections and Biofilm Formation Using Nanoparticles and Nanostructured Antibacterial Surfaces.
    Mi G; Shi D; Wang M; Webster TJ
    Adv Healthc Mater; 2018 Jul; 7(13):e1800103. PubMed ID: 29790304
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Potential application of antimicrobial peptides in the treatment of bacterial biofilm infections.
    Strempel N; Strehmel J; Overhage J
    Curr Pharm Des; 2015; 21(1):67-84. PubMed ID: 25189860
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Antimicrobial and Antibiofilm Peptides.
    Di Somma A; Moretta A; Canè C; Cirillo A; Duilio A
    Biomolecules; 2020 Apr; 10(4):. PubMed ID: 32340301
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Green synthesis of cerium oxide nanoparticles using Acorus calamus extract and their antibiofilm activity against bacterial pathogens.
    Altaf M; Manoharadas S; Zeyad MT
    Microsc Res Tech; 2021 Aug; 84(8):1638-1648. PubMed ID: 33559164
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Targeting biofilms and persisters of ESKAPE pathogens with P14KanS, a kanamycin peptide conjugate.
    Mohamed MF; Brezden A; Mohammad H; Chmielewski J; Seleem MN
    Biochim Biophys Acta Gen Subj; 2017 Apr; 1861(4):848-859. PubMed ID: 28132897
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metal nanobullets for multidrug resistant bacteria and biofilms.
    Chen CW; Hsu CY; Lai SM; Syu WJ; Wang TY; Lai PS
    Adv Drug Deliv Rev; 2014 Nov; 78():88-104. PubMed ID: 25138828
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Antimicrobial peptides as potential tool to fight bacterial biofilm.
    Dawgul M; Maciejewska M; Jaskiewicz M; Karafova A; Kamysz W
    Acta Pol Pharm; 2014; 71(1):39-47. PubMed ID: 24779193
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ultrasound assisted-phytofabricated Fe
    Alavi M; Karimi N
    Artif Cells Nanomed Biotechnol; 2019 Dec; 47(1):2405-2423. PubMed ID: 31187647
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nanomaterials for alternative antibacterial therapy.
    Hemeg HA
    Int J Nanomedicine; 2017; 12():8211-8225. PubMed ID: 29184409
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The efficacy of different anti-microbial metals at preventing the formation of, and eradicating bacterial biofilms of pathogenic indicator strains.
    Gugala N; Lemire JA; Turner RJ
    J Antibiot (Tokyo); 2017 Jun; 70(6):775-780. PubMed ID: 28196974
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Disassembling bacterial extracellular matrix with DNase-coated nanoparticles to enhance antibiotic delivery in biofilm infections.
    Baelo A; Levato R; Julián E; Crespo A; Astola J; Gavaldà J; Engel E; Mateos-Timoneda MA; Torrents E
    J Control Release; 2015 Jul; 209():150-8. PubMed ID: 25913364
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metal nanoparticles against multi-drug-resistance bacteria.
    Mishra A; Pradhan D; Halder J; Biswasroy P; Rai VK; Dubey D; Kar B; Ghosh G; Rath G
    J Inorg Biochem; 2022 Dec; 237():111938. PubMed ID: 36122430
    [TBL] [Abstract][Full Text] [Related]  

  • 20. New avenues of controlling microbial infections through anti-microbial and anti-biofilm potentials of green mono-and multi-metallic nanoparticles: A review.
    Das P; Karankar VS
    J Microbiol Methods; 2019 Dec; 167():105766. PubMed ID: 31706910
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.