These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
162 related articles for article (PubMed ID: 34184371)
21. Tuning Surface Electronic Configuration of NiFe LDHs Nanosheets by Introducing Cation Vacancies (Fe or Ni) as Highly Efficient Electrocatalysts for Oxygen Evolution Reaction. Wang Y; Qiao M; Li Y; Wang S Small; 2018 Apr; 14(17):e1800136. PubMed ID: 29611304 [TBL] [Abstract][Full Text] [Related]
22. Elemental selenium enables enhanced water oxidation electrocatalysis of NiFe layered double hydroxides. Duan S; Chen S; Wang T; Li S; Liu J; Liang J; Xie H; Han J; Jiao S; Cao R; Wang HL; Li Q Nanoscale; 2019 Oct; 11(37):17376-17383. PubMed ID: 31524918 [TBL] [Abstract][Full Text] [Related]
23. Capturing Manganese Oxide Intermediates in Electrochemical Water Oxidation at Neutral pH by In Situ Raman Spectroscopy. Cho KH; Park S; Seo H; Choi S; Lee MY; Ko C; Nam KT Angew Chem Int Ed Engl; 2021 Feb; 60(9):4673-4681. PubMed ID: 33417273 [TBL] [Abstract][Full Text] [Related]
24. Evidence of Mars-Van-Krevelen Mechanism in the Electrochemical Oxygen Evolution on Ni-Based Catalysts. Ferreira de Araújo J; Dionigi F; Merzdorf T; Oh HS; Strasser P Angew Chem Int Ed Engl; 2021 Jun; 60(27):14981-14988. PubMed ID: 33830603 [TBL] [Abstract][Full Text] [Related]
25. Molecular Insight of the Critical Role of Ni in Pt-Based Nanocatalysts for Improving the Oxygen Reduction Reaction Probed Using an Ze H; Chen X; Wang XT; Wang YH; Chen QQ; Lin JS; Zhang YJ; Zhang XG; Tian ZQ; Li JF J Am Chem Soc; 2021 Jan; 143(3):1318-1322. PubMed ID: 33449677 [TBL] [Abstract][Full Text] [Related]
26. Facile sonochemical synthesis of amorphous NiFe-(oxy)hydroxide nanoparticles as superior electrocatalysts for oxygen evolution reaction. Lee E; Park AH; Park HU; Kwon YU Ultrason Sonochem; 2018 Jan; 40(Pt A):552-557. PubMed ID: 28946457 [TBL] [Abstract][Full Text] [Related]
27. Tuning the Bifunctional Oxygen Electrocatalytic Properties of Core-Shell Co Guo X; Hu X; Wu D; Jing C; Liu W; Ren Z; Zhao Q; Jiang X; Xu C; Zhang Y; Hu N ACS Appl Mater Interfaces; 2019 Jun; 11(24):21506-21514. PubMed ID: 31124648 [TBL] [Abstract][Full Text] [Related]
28. In-situ structure and catalytic mechanism of NiFe and CoFe layered double hydroxides during oxygen evolution. Dionigi F; Zeng Z; Sinev I; Merzdorf T; Deshpande S; Lopez MB; Kunze S; Zegkinoglou I; Sarodnik H; Fan D; Bergmann A; Drnec J; Araujo JF; Gliech M; Teschner D; Zhu J; Li WX; Greeley J; Cuenya BR; Strasser P Nat Commun; 2020 May; 11(1):2522. PubMed ID: 32433529 [TBL] [Abstract][Full Text] [Related]
29. The importance of nickel oxyhydroxide deprotonation on its activity towards electrochemical water oxidation. Diaz-Morales O; Ferrus-Suspedra D; Koper MTM Chem Sci; 2016 Apr; 7(4):2639-2645. PubMed ID: 28660036 [TBL] [Abstract][Full Text] [Related]
30. Unraveling the Evolution of Dynamic Active Sites of LaNi Cheraparambil H; Vega-Paredes M; Scheu C; Weidenthaler C ACS Appl Mater Interfaces; 2024 May; 16(17):21997-22006. PubMed ID: 38647135 [TBL] [Abstract][Full Text] [Related]
31. Identification of Key Reversible Intermediates in Self-Reconstructed Nickel-Based Hybrid Electrocatalysts for Oxygen Evolution. Huang J; Li Y; Zhang Y; Rao G; Wu C; Hu Y; Wang X; Lu R; Li Y; Xiong J Angew Chem Int Ed Engl; 2019 Nov; 58(48):17458-17464. PubMed ID: 31550415 [TBL] [Abstract][Full Text] [Related]
32. Oxygen Isotope Labeling Experiments Reveal Different Reaction Sites for the Oxygen Evolution Reaction on Nickel and Nickel Iron Oxides. Lee S; Banjac K; Lingenfelder M; Hu X Angew Chem Int Ed Engl; 2019 Jul; 58(30):10295-10299. PubMed ID: 31106463 [TBL] [Abstract][Full Text] [Related]
33. Tracking Catalyst Redox States and Reaction Dynamics in Ni-Fe Oxyhydroxide Oxygen Evolution Reaction Electrocatalysts: The Role of Catalyst Support and Electrolyte pH. Görlin M; Ferreira de Araújo J; Schmies H; Bernsmeier D; Dresp S; Gliech M; Jusys Z; Chernev P; Kraehnert R; Dau H; Strasser P J Am Chem Soc; 2017 Feb; 139(5):2070-2082. PubMed ID: 28080038 [TBL] [Abstract][Full Text] [Related]
34. Enhancement of Oxygen Evolution Activity of Nickel Oxyhydroxide by Electrolyte Alkali Cations. Garcia AC; Touzalin T; Nieuwland C; Perini N; Koper MTM Angew Chem Int Ed Engl; 2019 Sep; 58(37):12999-13003. PubMed ID: 31250499 [TBL] [Abstract][Full Text] [Related]
35. Single-Atom Au/NiFe Layered Double Hydroxide Electrocatalyst: Probing the Origin of Activity for Oxygen Evolution Reaction. Zhang J; Liu J; Xi L; Yu Y; Chen N; Sun S; Wang W; Lange KM; Zhang B J Am Chem Soc; 2018 Mar; 140(11):3876-3879. PubMed ID: 29518310 [TBL] [Abstract][Full Text] [Related]
36. Deciphering Iron-Dependent Activity in Oxygen Evolution Catalyzed by Nickel-Iron Layered Double Hydroxide. Lee S; Bai L; Hu X Angew Chem Int Ed Engl; 2020 May; 59(21):8072-8077. PubMed ID: 32078226 [TBL] [Abstract][Full Text] [Related]
37. Promoting Bifunctional Water Splitting by Modification of the Electronic Structure at the Interface of NiFe Layered Double Hydroxide and Ag. Ma Y; Liu D; Wu H; Li M; Ding S; Hall AS; Xiao C ACS Appl Mater Interfaces; 2021 Jun; 13(22):26055-26063. PubMed ID: 34036787 [TBL] [Abstract][Full Text] [Related]
38. Fluoride-Induced Dynamic Surface Self-Reconstruction Produces Unexpectedly Efficient Oxygen-Evolution Catalyst. Zhang B; Jiang K; Wang H; Hu S Nano Lett; 2019 Jan; 19(1):530-537. PubMed ID: 30517786 [TBL] [Abstract][Full Text] [Related]
39. NiFe Oxalate Nanomesh Array with Homogenous Doping of Fe for Electrocatalytic Water Oxidation. Gao X; Chen D; Qi J; Li F; Song Y; Zhang W; Cao R Small; 2019 Nov; 15(46):e1904579. PubMed ID: 31588672 [TBL] [Abstract][Full Text] [Related]
40. Operando Spectroscopic Identification of Active Sites in NiFe Prussian Blue Analogues as Electrocatalysts: Activation of Oxygen Atoms for Oxygen Evolution Reaction. Su X; Wang Y; Zhou J; Gu S; Li J; Zhang S J Am Chem Soc; 2018 Sep; 140(36):11286-11292. PubMed ID: 30111100 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]