These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
162 related articles for article (PubMed ID: 34184371)
41. Effects of Metal Electrode Support on the Catalytic Activity of Fe(oxy)hydroxide for the Oxygen Evolution Reaction in Alkaline Media. Enman LJ; Vise AE; Burke Stevens M; Boettcher SW Chemphyschem; 2019 Nov; 20(22):3089-3095. PubMed ID: 31287609 [TBL] [Abstract][Full Text] [Related]
43. Activity and Stability Boosting of an Oxygen-Vacancy-Rich BiVO Pan JB; Wang BH; Wang JB; Ding HZ; Zhou W; Liu X; Zhang JR; Shen S; Guo JK; Chen L; Au CT; Jiang LL; Yin SF Angew Chem Int Ed Engl; 2021 Jan; 60(3):1433-1440. PubMed ID: 33006403 [TBL] [Abstract][Full Text] [Related]
44. Synergistic Coupling of Ni Nanoparticles with Ni Wang P; Qin R; Ji P; Pu Z; Zhu J; Lin C; Zhao Y; Tang H; Li W; Mu S Small; 2020 Sep; 16(37):e2001642. PubMed ID: 32762000 [TBL] [Abstract][Full Text] [Related]
45. Electrooxidation-enabled electroactive high-valence ferritic species in NiFe layered double hydroxide arrays as efficient oxygen evolution catalysts. Wang Y; Zhang X; Huang L; Guo Y; Yuan X; Hou H; Wu J; Lu C; Zhang Y J Colloid Interface Sci; 2021 Oct; 599():168-177. PubMed ID: 33933791 [TBL] [Abstract][Full Text] [Related]
46. Spin Crossover and Exchange Effects on Oxygen Evolution Reaction Catalyzed by Bimetallic Metal Organic Frameworks. Liu G; Xie F; Cai X; Ye J ACS Catal; 2024 Jun; 14(11):8652-8665. PubMed ID: 38868096 [TBL] [Abstract][Full Text] [Related]
47. Optimized bimetallic nickel-iron phosphides with rich defects as enhanced electrocatalysts for oxygen evolution reaction. Gao WK; Chi JQ; Wang ZB; Lin JH; Liu DP; Zeng JB; Yu JF; Wang L; Chai YM; Dong B J Colloid Interface Sci; 2019 Mar; 537():11-19. PubMed ID: 30414504 [TBL] [Abstract][Full Text] [Related]
48. NiFe-Layered Double Hydroxide Synchronously Activated by Heterojunctions and Vacancies for the Oxygen Evolution Reaction. Luo Y; Wu Y; Wu D; Huang C; Xiao D; Chen H; Zheng S; Chu PK ACS Appl Mater Interfaces; 2020 Sep; 12(38):42850-42858. PubMed ID: 32862635 [TBL] [Abstract][Full Text] [Related]
49. Engineering Active Fe Sites on Nickel-Iron Layered Double Hydroxide through Component Segregation for Oxygen Evolution Reaction. Peng C; Ran N; Wan G; Zhao W; Kuang Z; Lu Z; Sun C; Liu J; Wang L; Chen H ChemSusChem; 2020 Feb; 13(4):811-818. PubMed ID: 31802649 [TBL] [Abstract][Full Text] [Related]
50. Oxygen Evolution Reaction Dynamics, Faradaic Charge Efficiency, and the Active Metal Redox States of Ni-Fe Oxide Water Splitting Electrocatalysts. Görlin M; Chernev P; Ferreira de Araújo J; Reier T; Dresp S; Paul B; Krähnert R; Dau H; Strasser P J Am Chem Soc; 2016 May; 138(17):5603-14. PubMed ID: 27031737 [TBL] [Abstract][Full Text] [Related]
51. Mechanistic insight into the active centers of single/dual-atom Ni/Fe-based oxygen electrocatalysts. Wan W; Zhao Y; Wei S; Triana CA; Li J; Arcifa A; Allen CS; Cao R; Patzke GR Nat Commun; 2021 Sep; 12(1):5589. PubMed ID: 34552084 [TBL] [Abstract][Full Text] [Related]
52. Mechanism of Oxygen Evolution Catalyzed by Cobalt Oxyhydroxide: Cobalt Superoxide Species as a Key Intermediate and Dioxygen Release as a Rate-Determining Step. Moysiadou A; Lee S; Hsu CS; Chen HM; Hu X J Am Chem Soc; 2020 Jul; 142(27):11901-11914. PubMed ID: 32539368 [TBL] [Abstract][Full Text] [Related]
53. Revealing the Electro-oxidation Mechanism of 5-Aminotetrazole on Nickel-Based Oxides and Synthesizing 5,5'-Azotetrazolate Salts. Qin Y; Yang F; Chen Z; Lu M; Wang P Inorg Chem; 2024 Jul; 63(26):12299-12308. PubMed ID: 38888107 [TBL] [Abstract][Full Text] [Related]
54. Recent Progress on NiFe-Based Electrocatalysts for the Oxygen Evolution Reaction. Zhao J; Zhang JJ; Li ZY; Bu XH Small; 2020 Dec; 16(51):e2003916. PubMed ID: 33244890 [TBL] [Abstract][Full Text] [Related]
55. Triple hierarchy and double synergies of NiFe/Co Zhan C; Liu Z; Zhou Y; Guo M; Zhang X; Tu J; Ding L; Cao Y Nanoscale; 2019 Feb; 11(7):3378-3385. PubMed ID: 30724936 [TBL] [Abstract][Full Text] [Related]
56. Controlling the 3-D morphology of Ni-Fe-based nanocatalysts for the oxygen evolution reaction. Manso RH; Acharya P; Deng S; Crane CC; Reinhart B; Lee S; Tong X; Nykypanchuk D; Zhu J; Zhu Y; Greenlee LF; Chen J Nanoscale; 2019 Apr; 11(17):8170-8184. PubMed ID: 30775739 [TBL] [Abstract][Full Text] [Related]
57. Oxygen vacancy-rich amorphous porous NiFe(OH) Wang S; Ge X; Lv C; Hu C; Guan H; Wu J; Wang Z; Yang X; Shi Y; Song J; Zhang Z; Watanabe A; Cai J Nanoscale; 2020 May; 12(17):9557-9568. PubMed ID: 32315004 [TBL] [Abstract][Full Text] [Related]
58. An investigation of thin-film Ni-Fe oxide catalysts for the electrochemical evolution of oxygen. Louie MW; Bell AT J Am Chem Soc; 2013 Aug; 135(33):12329-37. PubMed ID: 23859025 [TBL] [Abstract][Full Text] [Related]
59. Operando Analysis of NiFe and Fe Oxyhydroxide Electrocatalysts for Water Oxidation: Detection of Fe⁴⁺ by Mössbauer Spectroscopy. Chen JY; Dang L; Liang H; Bi W; Gerken JB; Jin S; Alp EE; Stahl SS J Am Chem Soc; 2015 Dec; 137(48):15090-3. PubMed ID: 26601790 [TBL] [Abstract][Full Text] [Related]
60. Cu Qi H; Zhang P; Wang H; Cui Y; Liu X; She X; Wen Y; Zhan T J Colloid Interface Sci; 2021 Oct; 599():370-380. PubMed ID: 33962198 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]