These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
144 related articles for article (PubMed ID: 34184380)
21. Zirconium and Aluminum MOFs for Low-Pressure SO Brandt P; Xing SH; Liang J; Kurt G; Nuhnen A; Weingart O; Janiak C ACS Appl Mater Interfaces; 2021 Jun; 13(24):29137-29149. PubMed ID: 34115467 [TBL] [Abstract][Full Text] [Related]
22. Three metal-organic framework isomers of different pore sizes for selective CO Zhang R; Huang JH; Meng DX; Ge FY; Wang LF; Xu YK; Liu XG; Meng MM; Lu ZZ; Zheng HG; Huang W Dalton Trans; 2020 May; 49(17):5618-5624. PubMed ID: 32285086 [TBL] [Abstract][Full Text] [Related]
23. A pressure-amplifying framework material with negative gas adsorption transitions. Krause S; Bon V; Senkovska I; Stoeck U; Wallacher D; Többens DM; Zander S; Pillai RS; Maurin G; Coudert FX; Kaskel S Nature; 2016 Apr; 532(7599):348-52. PubMed ID: 27049950 [TBL] [Abstract][Full Text] [Related]
24. Adsorption study of CO2, CH4, N2, and H2O on an interwoven copper carboxylate metal-organic framework (MOF-14). Karra JR; Grabicka BE; Huang YG; Walton KS J Colloid Interface Sci; 2013 Feb; 392():331-336. PubMed ID: 23158044 [TBL] [Abstract][Full Text] [Related]
25. Trends in the adsorption of volatile organic compounds in a large-pore metal-organic framework, IRMOF-1. Luebbers MT; Wu T; Shen L; Masel RI Langmuir; 2010 Jul; 26(13):11319-29. PubMed ID: 20476773 [TBL] [Abstract][Full Text] [Related]
26. Synthesis, fine structural characterization, and CO2 adsorption capacity of metal organic frameworks-74. Adhikari AK; Lin KS J Nanosci Nanotechnol; 2014 Apr; 14(4):2709-17. PubMed ID: 24734683 [TBL] [Abstract][Full Text] [Related]
27. Guest-Induced Switchable Breathing Behavior in a Flexible Metal-Organic Framework with Pronounced Negative Gas Pressure. Shi YX; Li WX; Zhang WH; Lang JP Inorg Chem; 2018 Jul; 57(14):8627-8633. PubMed ID: 29956934 [TBL] [Abstract][Full Text] [Related]
28. Deciphering the Relations between Pore Structure and Adsorption Behavior in Metal-Organic Frameworks: Unexpected Lessons from Argon Adsorption on Copper-Benzene-1,3,5-tricarboxylate. Dantas S; Sarkisov L; Neimark AV J Am Chem Soc; 2019 May; 141(21):8397-8401. PubMed ID: 31091871 [TBL] [Abstract][Full Text] [Related]
29. Effect of Amine Functionalization of MOF Adsorbents for Enhanced CO Bahamon D; Anlu W; Builes S; Khaleel M; Vega LF Front Chem; 2020; 8():574622. PubMed ID: 33585395 [TBL] [Abstract][Full Text] [Related]
30. Dual-Channel, Molecular-Sieving Core/Shell ZIF@MOF Architectures as Engineered Fillers in Hybrid Membranes for Highly Selective CO Song Z; Qiu F; Zaia EW; Wang Z; Kunz M; Guo J; Brady M; Mi B; Urban JJ Nano Lett; 2017 Nov; 17(11):6752-6758. PubMed ID: 29072837 [TBL] [Abstract][Full Text] [Related]
31. Pore Space Partition in Metal-Organic Frameworks. Zhai QG; Bu X; Zhao X; Li DS; Feng P Acc Chem Res; 2017 Feb; 50(2):407-417. PubMed ID: 28106984 [TBL] [Abstract][Full Text] [Related]
32. Polarizable Force Fields for CO Becker TM; Heinen J; Dubbeldam D; Lin LC; Vlugt TJ J Phys Chem C Nanomater Interfaces; 2017 Mar; 121(8):4659-4673. PubMed ID: 28286598 [TBL] [Abstract][Full Text] [Related]
33. Pore Structure Compartmentalization for Advanced Characterization of Metal-Organic Framework Materials. Parashar S; Neimark AV J Chem Inf Model; 2024 Apr; 64(8):3260-3268. PubMed ID: 38315986 [TBL] [Abstract][Full Text] [Related]
34. Crystallizing Atomic Xenon in a Flexible MOF to Probe and Understand Its Temperature-Dependent Breathing Behavior and Unusual Gas Adsorption Phenomenon. Wang H; Warren M; Jagiello J; Jensen S; Ghose SK; Tan K; Yu L; Emge TJ; Thonhauser T; Li J J Am Chem Soc; 2020 Nov; 142(47):20088-20097. PubMed ID: 33172264 [TBL] [Abstract][Full Text] [Related]
35. Synthesis of Hierarchically Structured Hybrid Materials by Controlled Self-Assembly of Metal-Organic Framework with Mesoporous Silica for CO Chen C; Li B; Zhou L; Xia Z; Feng N; Ding J; Wang L; Wan H; Guan G ACS Appl Mater Interfaces; 2017 Jul; 9(27):23060-23071. PubMed ID: 28632386 [TBL] [Abstract][Full Text] [Related]
36. Sizable dynamics in small pores: CO Lu Y; Lucier BE; Zhang Y; Ren P; Zheng A; Huang Y Phys Chem Chem Phys; 2017 Feb; 19(8):6130-6141. PubMed ID: 28191584 [TBL] [Abstract][Full Text] [Related]
37. Effective Gas Separation Performance Enhancement Obtained by Constructing Polymorphous Core-Shell Metal-Organic Frameworks. He Y; Sun M; Zhao Q; Shang J; Tian Y; Xiao P; Gu Q; Li L; Webley PA ACS Appl Mater Interfaces; 2019 Aug; 11(33):30234-30239. PubMed ID: 31339300 [TBL] [Abstract][Full Text] [Related]
38. Predicting the Features of Methane Adsorption in Large Pore Metal-Organic Frameworks for Energy Storage. Manos G; Dunne LJ Nanomaterials (Basel); 2018 Oct; 8(10):. PubMed ID: 30314317 [TBL] [Abstract][Full Text] [Related]
39. Grand canonical Monte Carlo simulation of argon adsorption at the surface of silica nanopores: effect of pore size, pore morphology, and surface roughness. Coasne B; Pellenq RJ J Chem Phys; 2004 Feb; 120(6):2913-22. PubMed ID: 15268439 [TBL] [Abstract][Full Text] [Related]
40. Why Porous Materials Have Selective Adsorptions: A Rational Aspect from Electrodynamics. Chen Q; Ma Y; Song WC; Chang Z; Li JR; Zhang J; Sun HW; Balbuena PB; Bu XH Inorg Chem; 2017 Mar; 56(5):2614-2620. PubMed ID: 28199096 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]