These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
107 related articles for article (PubMed ID: 34185061)
1. Autophagy complements metalloprotease FtsH6 in degrading plastid heat shock protein HSP21 during heat stress recovery. Sedaghatmehr M; Thirumalaikumar VP; Kamranfar I; Schulz K; Mueller-Roeber B; Sampathkumar A; Balazadeh S J Exp Bot; 2021 Jun; ():. PubMed ID: 34185061 [TBL] [Abstract][Full Text] [Related]
2. The plastid metalloprotease FtsH6 and small heat shock protein HSP21 jointly regulate thermomemory in Arabidopsis. Sedaghatmehr M; Mueller-Roeber B; Balazadeh S Nat Commun; 2016 Aug; 7():12439. PubMed ID: 27561243 [TBL] [Abstract][Full Text] [Related]
3. Heat shock factor HSFA2 fine-tunes resetting of thermomemory via plastidic metalloprotease FtsH6. Sedaghatmehr M; Stüwe B; Mueller-Roeber B; Balazadeh S J Exp Bot; 2022 Oct; 73(18):6394-6404. PubMed ID: 35705109 [TBL] [Abstract][Full Text] [Related]
4. Arabidopsis ATG8-INTERACTING PROTEIN1 is involved in autophagy-dependent vesicular trafficking of plastid proteins to the vacuole. Michaeli S; Honig A; Levanony H; Peled-Zehavi H; Galili G Plant Cell; 2014 Oct; 26(10):4084-101. PubMed ID: 25281689 [TBL] [Abstract][Full Text] [Related]
5. Selective autophagy regulates heat stress memory in Arabidopsis by NBR1-mediated targeting of HSP90.1 and ROF1. Thirumalaikumar VP; Gorka M; Schulz K; Masclaux-Daubresse C; Sampathkumar A; Skirycz A; Vierstra RD; Balazadeh S Autophagy; 2021 Sep; 17(9):2184-2199. PubMed ID: 32967551 [TBL] [Abstract][Full Text] [Related]
6. Chloroplast small heat shock protein HSP21 interacts with plastid nucleoid protein pTAC5 and is essential for chloroplast development in Arabidopsis under heat stress. Zhong L; Zhou W; Wang H; Ding S; Lu Q; Wen X; Peng L; Zhang L; Lu C Plant Cell; 2013 Aug; 25(8):2925-43. PubMed ID: 23922206 [TBL] [Abstract][Full Text] [Related]
7. Identification of core subunits of photosystem II as action sites of HSP21, which is activated by the GUN5-mediated retrograde pathway in Arabidopsis. Chen ST; He NY; Chen JH; Guo FQ Plant J; 2017 Mar; 89(6):1106-1118. PubMed ID: 27943531 [TBL] [Abstract][Full Text] [Related]
8. The chloroplast-localized small heat shock protein Hsp21 associates with the thylakoid membranes in heat-stressed plants. Bernfur K; Rutsdottir G; Emanuelsson C Protein Sci; 2017 Sep; 26(9):1773-1784. PubMed ID: 28608391 [TBL] [Abstract][Full Text] [Related]
9. The chloroplast small heat shock protein undergoes oxidation-dependent conformational changes and may protect plants from oxidative stress. Härndahl U; Hall RB; Osteryoung KW; Vierling E; Bornman JF; Sundby C Cell Stress Chaperones; 1999 Jun; 4(2):129-38. PubMed ID: 10547062 [TBL] [Abstract][Full Text] [Related]
10. JMJ Histone Demethylases Balance H3K27me3 and H3K4me3 Levels at the Yamaguchi N; Ito T Biomolecules; 2021 Jun; 11(6):. PubMed ID: 34200465 [TBL] [Abstract][Full Text] [Related]
11. Autophagy: a key player in the recovery of plants from heat stress. Sedaghatmehr M; Balazadeh S J Exp Bot; 2024 Apr; 75(8):2246-2255. PubMed ID: 38236036 [TBL] [Abstract][Full Text] [Related]
12. A regulatory role of autophagy for resetting the memory of heat stress in plants. Sedaghatmehr M; Thirumalaikumar VP; Kamranfar I; Marmagne A; Masclaux-Daubresse C; Balazadeh S Plant Cell Environ; 2019 Mar; 42(3):1054-1064. PubMed ID: 30136402 [TBL] [Abstract][Full Text] [Related]
13. Poly(A) tail length of a heat shock protein RNA is increased by severe heat stress, but intron splicing is unaffected. Osteryoung KW; Sundberg H; Vierling E Mol Gen Genet; 1993 Jun; 239(3):323-33. PubMed ID: 8391109 [TBL] [Abstract][Full Text] [Related]
14. Dynamics of small heat shock protein distribution within the chloroplasts of higher plants. Osteryoung KW; Vierling E J Biol Chem; 1994 Nov; 269(46):28676-82. PubMed ID: 7961818 [TBL] [Abstract][Full Text] [Related]
15. Small but crucial: the novel small heat shock protein Hsp21 mediates stress adaptation and virulence in Candida albicans. Mayer FL; Wilson D; Jacobsen ID; Miramón P; Slesiona S; Bohovych IM; Brown AJ; Hube B PLoS One; 2012; 7(6):e38584. PubMed ID: 22685587 [TBL] [Abstract][Full Text] [Related]
16. A peptide methionine sulfoxide reductase highly expressed in photosynthetic tissue in Arabidopsis thaliana can protect the chaperone-like activity of a chloroplast-localized small heat shock protein. Gustavsson N; Kokke BP; Härndahl U; Silow M; Bechtold U; Poghosyan Z; Murphy D; Boelens WC; Sundby C Plant J; 2002 Mar; 29(5):545-53. PubMed ID: 11874568 [TBL] [Abstract][Full Text] [Related]
17. The transmembrane autophagy cargo receptors ATI1 and ATI2 interact with ATG8 through intrinsically disordered regions with distinct biophysical properties. Sjøgaard IMZ; Bressendorff S; Prestel A; Kausika S; Oksbjerg E; Kragelund BB; Brodersen P Biochem J; 2019 Feb; 476(3):449-465. PubMed ID: 30642888 [TBL] [Abstract][Full Text] [Related]
18. Arabidopsis Hsa32, a novel heat shock protein, is essential for acquired thermotolerance during long recovery after acclimation. Charng YY; Liu HC; Liu NY; Hsu FC; Ko SS Plant Physiol; 2006 Apr; 140(4):1297-305. PubMed ID: 16500991 [TBL] [Abstract][Full Text] [Related]
19. Structural basis of substrate recognition and thermal protection by a small heat shock protein. Yu C; Leung SKP; Zhang W; Lai LTF; Chan YK; Wong MC; Benlekbir S; Cui Y; Jiang L; Lau WCY Nat Commun; 2021 May; 12(1):3007. PubMed ID: 34021140 [TBL] [Abstract][Full Text] [Related]
20. Accumulation, stability, and localization of a major chloroplast heat-shock protein. Chen Q; Lauzon LM; DeRocher AE; Vierling E J Cell Biol; 1990 Jun; 110(6):1873-83. PubMed ID: 2351688 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]