BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 34185079)

  • 21. OPUS-X: an open-source toolkit for protein torsion angles, secondary structure, solvent accessibility, contact map predictions and 3D folding.
    Xu G; Wang Q; Ma J
    Bioinformatics; 2021 Dec; 38(1):108-114. PubMed ID: 34478500
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Rosetta predictions in CASP5: successes, failures, and prospects for complete automation.
    Bradley P; Chivian D; Meiler J; Misura KM; Rohl CA; Schief WR; Wedemeyer WJ; Schueler-Furman O; Murphy P; Schonbrun J; Strauss CE; Baker D
    Proteins; 2003; 53 Suppl 6():457-68. PubMed ID: 14579334
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Protein Multiple Conformation Prediction Using Multi-Objective Evolution Algorithm.
    Hou M; Jin S; Cui X; Peng C; Zhao K; Song L; Zhang G
    Interdiscip Sci; 2024 Jan; ():. PubMed ID: 38190097
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Combining Evolutionary Information and an Iterative Sampling Strategy for Accurate Protein Structure Prediction.
    Braun T; Koehler Leman J; Lange OF
    PLoS Comput Biol; 2015 Dec; 11(12):e1004661. PubMed ID: 26713437
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Geometric potentials from deep learning improve prediction of CDR H3 loop structures.
    Ruffolo JA; Guerra C; Mahajan SP; Sulam J; Gray JJ
    Bioinformatics; 2020 Jul; 36(Suppl_1):i268-i275. PubMed ID: 32657412
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Protein structure prediction using sparse NOE and RDC restraints with Rosetta in CASP13.
    Kuenze G; Meiler J
    Proteins; 2019 Dec; 87(12):1341-1350. PubMed ID: 31292988
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Balancing exploration and exploitation in population-based sampling improves fragment-based de novo protein structure prediction.
    Simoncini D; Schiex T; Zhang KY
    Proteins; 2017 May; 85(5):852-858. PubMed ID: 28066917
    [TBL] [Abstract][Full Text] [Related]  

  • 28. MoLPC2: improved prediction of large protein complex structures and stoichiometry using Monte Carlo Tree Search and AlphaFold2.
    Chim HY; Elofsson A
    Bioinformatics; 2024 Jun; 40(6):. PubMed ID: 38781500
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Accurate De Novo Prediction of Protein Contact Map by Ultra-Deep Learning Model.
    Wang S; Sun S; Li Z; Zhang R; Xu J
    PLoS Comput Biol; 2017 Jan; 13(1):e1005324. PubMed ID: 28056090
    [TBL] [Abstract][Full Text] [Related]  

  • 30. An Evolutionary Profile Guided Greedy Parallel Replica-Exchange Monte Carlo Search Algorithm for Rapid Convergence in Protein Design.
    Banerjee A; Pal K; Mitra P
    IEEE/ACM Trans Comput Biol Bioinform; 2021; 18(2):489-499. PubMed ID: 31329126
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Simulated tempering yields insight into the low-resolution Rosetta scoring functions.
    Bowman GR; Pande VS
    Proteins; 2009 Feb; 74(3):777-88. PubMed ID: 18767152
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Improved Protein Structure Prediction Using a New Multi-Scale Network and Homologous Templates.
    Su H; Wang W; Du Z; Peng Z; Gao SH; Cheng MM; Yang J
    Adv Sci (Weinh); 2021 Dec; 8(24):e2102592. PubMed ID: 34719864
    [TBL] [Abstract][Full Text] [Related]  

  • 33. MetaPSICOV: combining coevolution methods for accurate prediction of contacts and long range hydrogen bonding in proteins.
    Jones DT; Singh T; Kosciolek T; Tetchner S
    Bioinformatics; 2015 Apr; 31(7):999-1006. PubMed ID: 25431331
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A structural homology approach for computational protein design with flexible backbone.
    Simoncini D; Zhang KYJ; Schiex T; Barbe S
    Bioinformatics; 2019 Jul; 35(14):2418-2426. PubMed ID: 30496341
    [TBL] [Abstract][Full Text] [Related]  

  • 35. LS-align: an atom-level, flexible ligand structural alignment algorithm for high-throughput virtual screening.
    Hu J; Liu Z; Yu DJ; Zhang Y
    Bioinformatics; 2018 Jul; 34(13):2209-2218. PubMed ID: 29462237
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Sampling bottlenecks in de novo protein structure prediction.
    Kim DE; Blum B; Bradley P; Baker D
    J Mol Biol; 2009 Oct; 393(1):249-60. PubMed ID: 19646450
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Generalized protein structure prediction based on combination of fold-recognition with de novo folding and evaluation of models.
    KoliƄski A; Bujnicki JM
    Proteins; 2005; 61 Suppl 7():84-90. PubMed ID: 16187348
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Identifying native-like protein structures with scoring functions based on all-atom ECEPP force fields, implicit solvent models and structure relaxation.
    Arnautova YA; Vorobjev YN; Vila JA; Scheraga HA
    Proteins; 2009 Oct; 77(1):38-51. PubMed ID: 19384995
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Multi contact-based folding method for de novo protein structure prediction.
    Hou M; Peng C; Zhou X; Zhang B; Zhang G
    Brief Bioinform; 2022 Jan; 23(1):. PubMed ID: 34849573
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Balancing multiple objectives in conformation sampling to control decoy diversity in template-free protein structure prediction.
    Zaman AB; Shehu A
    BMC Bioinformatics; 2019 Apr; 20(1):211. PubMed ID: 31023237
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.