These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 34185509)

  • 1. From Femtoseconds to Gigaseconds: The SolDeg Platform for the Performance Degradation Analysis of Silicon Heterojunction Solar Cells.
    Unruh D; Meidanshahi RV; Hansen C; Manzoor S; Bertoni MI; Goodnick SM; Zimanyi GT
    ACS Appl Mater Interfaces; 2021 Jul; 13(27):32424-32434. PubMed ID: 34185509
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Correlation between in Situ Diagnostics of the Hydrogen Plasma and the Interface Passivation Quality of Hydrogen Plasma Post-Treated a-Si:H in Silicon Heterojunction Solar Cells.
    Soman A; Nsofor U; Das U; Gu T; Hegedus S
    ACS Appl Mater Interfaces; 2019 May; 11(17):16181-16190. PubMed ID: 30951278
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Atomic structure of interface states in silicon heterojunction solar cells.
    George BM; Behrends J; Schnegg A; Schulze TF; Fehr M; Korte L; Rech B; Lips K; Rohrmüller M; Rauls E; Schmidt WG; Gerstmann U
    Phys Rev Lett; 2013 Mar; 110(13):136803. PubMed ID: 23581355
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evolution of a Native Oxide Layer at the a-Si:H/c-Si Interface and Its Influence on a Silicon Heterojunction Solar Cell.
    Liu W; Meng F; Zhang X; Liu Z
    ACS Appl Mater Interfaces; 2015 Dec; 7(48):26522-9. PubMed ID: 26565116
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improved amorphous/crystalline silicon interface passivation for heterojunction solar cells by low-temperature chemical vapor deposition and post-annealing treatment.
    Wang F; Zhang X; Wang L; Jiang Y; Wei C; Xu S; Zhao Y
    Phys Chem Chem Phys; 2014 Oct; 16(37):20202-8. PubMed ID: 25138166
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prediction of sub-pyramid texturing as the next step towards high efficiency silicon heterojunction solar cells.
    Chu F; Qu X; He Y; Li W; Chen X; Zheng Z; Yang M; Ru X; Peng F; Qu M; Zheng K; Xu X; Yan H; Zhang Y
    Nat Commun; 2023 Jun; 14(1):3596. PubMed ID: 37328475
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Novel high-efficiency crystalline-silicon-based compound heterojunction solar cells: HCT (heterojunction with compound thin-layer).
    Liu Y; Sun Y; Liu W; Yao J
    Phys Chem Chem Phys; 2014 Aug; 16(29):15400-10. PubMed ID: 24945832
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhancing the photovoltaic performance of hybrid heterojunction solar cells by passivation of silicon surface via a simple 1-min annealing process.
    Xie R; Ishijima N; Sugime H; Noda S
    Sci Rep; 2019 Aug; 9(1):12051. PubMed ID: 31427642
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Potential of PEDOT:PSS as a hole selective front contact for silicon heterojunction solar cells.
    Jäckle S; Liebhaber M; Gersmann C; Mews M; Jäger K; Christiansen S; Lips K
    Sci Rep; 2017 May; 7(1):2170. PubMed ID: 28526863
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optoelectronic transport properties in amorphous/crystalline silicon solar cell heterojunctions measured by frequency-domain photocarrier radiometry: multi-parameter measurement reliability and precision studies.
    Zhang Y; Melnikov A; Mandelis A; Halliop B; Kherani NP; Zhu R
    Rev Sci Instrum; 2015 Mar; 86(3):033901. PubMed ID: 25832239
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Relaxation processes in silicon heterojunction solar cells probed via noise spectroscopy.
    Davenport K; Trinh CT; Hayward M; Lips K; Rogachev A
    Sci Rep; 2021 Jun; 11(1):13238. PubMed ID: 34168278
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Realization of 13.6% Efficiency on 20 μm Thick Si/Organic Hybrid Heterojunction Solar Cells via Advanced Nanotexturing and Surface Recombination Suppression.
    He J; Gao P; Liao M; Yang X; Ying Z; Zhou S; Ye J; Cui Y
    ACS Nano; 2015 Jun; 9(6):6522-31. PubMed ID: 26047260
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantification of Valleys of Randomly Textured Substrates as a Function of Opening Angle: Correlation to the Defect Density in Intrinsic nc-Si:H.
    Kim do Y; Hänni S; Schüttauf JW; van Swaaij RA; Zeman M
    ACS Appl Mater Interfaces; 2016 Aug; 8(32):20660-6. PubMed ID: 27463965
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improvement of the SiOx passivation layer for high-efficiency Si/PEDOT:PSS heterojunction solar cells.
    Sheng J; Fan K; Wang D; Han C; Fang J; Gao P; Ye J
    ACS Appl Mater Interfaces; 2014 Sep; 6(18):16027-34. PubMed ID: 25157634
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Silicon Nanowire Heterojunction Solar Cells with an Al
    Kato S; Kurokawa Y; Gotoh K; Soga T
    Nanoscale Res Lett; 2019 Mar; 14(1):99. PubMed ID: 30877482
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Performance analysis of rigorous coupled-wave analysis and its integration in a coupled modeling approach for optical simulation of complete heterojunction silicon solar cells.
    Lokar Z; Lipovsek B; Topic M; Krc J
    Beilstein J Nanotechnol; 2018; 9():2315-2329. PubMed ID: 30202700
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 18.4%-Efficient Heterojunction Si Solar Cells Using Optimized ITO/Top Electrode.
    Kim N; Um HD; Choi I; Kim KH; Seo K
    ACS Appl Mater Interfaces; 2016 May; 8(18):11412-7. PubMed ID: 27092403
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bilayer MoO
    Li J; Pan T; Wang J; Cao S; Lin Y; Hoex B; Ma Z; Lu L; Yang L; Sun B; Li D
    ACS Appl Mater Interfaces; 2020 Aug; 12(32):36778-36786. PubMed ID: 32667771
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Naphthalene Diimide-Based n-Type Polymers: Efficient Rear Interlayers for High-Performance Silicon-Organic Heterojunction Solar Cells.
    Han Y; Liu Y; Yuan J; Dong H; Li Y; Ma W; Lee ST; Sun B
    ACS Nano; 2017 Jul; 11(7):7215-7222. PubMed ID: 28679036
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phosphorus Catalytic Doping on Intrinsic Silicon Thin Films for the Application in Silicon Heterojunction Solar Cells.
    Liu Y; Pomaska M; Duan W; Qiu D; Li S; Lambertz A; Gad A; Breuer U; Finger F; Rau U; Ding K
    ACS Appl Mater Interfaces; 2020 Dec; 12(50):56615-56621. PubMed ID: 33263985
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.