These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

244 related articles for article (PubMed ID: 34185516)

  • 1. Optimized cDICE for Efficient Reconstitution of Biological Systems in Giant Unilamellar Vesicles.
    Van de Cauter L; Fanalista F; van Buren L; De Franceschi N; Godino E; Bouw S; Danelon C; Dekker C; Koenderink GH; Ganzinger KA
    ACS Synth Biol; 2021 Jul; 10(7):1690-1702. PubMed ID: 34185516
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rapid Encapsulation of Reconstituted Cytoskeleton Inside Giant Unilamellar Vesicles.
    Bashirzadeh Y; Wubshet N; Litschel T; Schwille P; Liu AP
    J Vis Exp; 2021 Nov; (177):. PubMed ID: 34842240
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In Vitro Reconstitution of the Actin Cytoskeleton Inside Giant Unilamellar Vesicles.
    Chen S; Sun ZG; Murrell MP
    J Vis Exp; 2022 Aug; (186):. PubMed ID: 36094272
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Formation of phase separated vesicles by double layer cDICE.
    Dürre K; Bausch AR
    Soft Matter; 2019 Dec; 15(47):9676-9681. PubMed ID: 31663090
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optimization of the Inverted Emulsion Method for High-Yield Production of Biomimetic Giant Unilamellar Vesicles.
    Moga A; Yandrapalli N; Dimova R; Robinson T
    Chembiochem; 2019 Oct; 20(20):2674-2682. PubMed ID: 31529570
    [TBL] [Abstract][Full Text] [Related]  

  • 6. One-Pot Assembly of Complex Giant Unilamellar Vesicle-Based Synthetic Cells.
    Göpfrich K; Haller B; Staufer O; Dreher Y; Mersdorf U; Platzman I; Spatz JP
    ACS Synth Biol; 2019 May; 8(5):937-947. PubMed ID: 31042361
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Protein Reconstitution Inside Giant Unilamellar Vesicles.
    Litschel T; Schwille P
    Annu Rev Biophys; 2021 May; 50():525-548. PubMed ID: 33667121
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Exploring Giant Unilamellar Vesicle Production for Artificial Cells - Current Challenges and Future Directions.
    Van de Cauter L; van Buren L; Koenderink GH; Ganzinger KA
    Small Methods; 2023 Dec; 7(12):e2300416. PubMed ID: 37464561
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Membrane localization of actin filaments stabilizes giant unilamellar vesicles against external deforming forces.
    Fink A; Fazliev S; Abele T; Spatz JP; Göpfrich K; Cavalcanti-Adam EA
    Eur J Cell Biol; 2024 Jun; 103(2):151428. PubMed ID: 38850712
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Microfluidic Platform for Sequential Assembly and Separation of Synthetic Cell Models.
    Tivony R; Fletcher M; Al Nahas K; Keyser UF
    ACS Synth Biol; 2021 Nov; 10(11):3105-3116. PubMed ID: 34761904
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reconstitution of an RNA Virus Replicase in Artificial Giant Unilamellar Vesicles Supports Full Replication and Provides Protection for the Double-Stranded RNA Replication Intermediate.
    Kovalev N; Pogany J; Nagy PD
    J Virol; 2020 Aug; 94(18):. PubMed ID: 32641477
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Advances in giant unilamellar vesicle preparation techniques and applications.
    Nair KS; Bajaj H
    Adv Colloid Interface Sci; 2023 Aug; 318():102935. PubMed ID: 37320960
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rearrangement of GUV-confined actin networks in response to micropipette aspiration.
    Wubshet NH; Young CJ; Liu AP
    Cytoskeleton (Hoboken); 2024 Aug; 81(8):310-317. PubMed ID: 38326972
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reconstitution and anchoring of cytoskeleton inside giant unilamellar vesicles.
    Merkle D; Kahya N; Schwille P
    Chembiochem; 2008 Nov; 9(16):2673-81. PubMed ID: 18830993
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Formation of Giant Unilamellar Vesicles Assisted by Fluorinated Nanoparticles.
    Waeterschoot J; Gosselé W; Alizadeh Zeinabad H; Lammertyn J; Koos E; Casadevall I Solvas X
    Adv Sci (Weinh); 2023 Dec; 10(34):e2302461. PubMed ID: 37807811
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Light-Triggered Cargo Loading and Division of DNA-Containing Giant Unilamellar Lipid Vesicles.
    Dreher Y; Jahnke K; Schröter M; Göpfrich K
    Nano Lett; 2021 Jul; 21(14):5952-5957. PubMed ID: 34251204
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Production of giant unilamellar vesicles by the water-in-oil emulsion-transfer method without high internal concentrations of sugars.
    Tsuji G; Sunami T; Ichihashi N
    J Biosci Bioeng; 2018 Oct; 126(4):540-545. PubMed ID: 29793863
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An integrated microfluidic platform to fabricate single-micrometer asymmetric giant unilamellar vesicles (GUVs) using dielectrophoretic separation of microemulsions.
    Maktabi S; Malmstadt N; Schertzer JW; Chiarot PR
    Biomicrofluidics; 2021 Mar; 15(2):024112. PubMed ID: 33912267
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Switching ON of Transcription-Translation System Using GUV Fusion by Co-supplementation of Calcium with Long-Chain Polyethylene Glycol.
    Uwaguchi Y; Fujiwara K; Doi N
    Chembiochem; 2021 Jul; 22(13):2319-2324. PubMed ID: 33971077
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reconstitution of contractile actomyosin rings in vesicles.
    Litschel T; Kelley CF; Holz D; Adeli Koudehi M; Vogel SK; Burbaum L; Mizuno N; Vavylonis D; Schwille P
    Nat Commun; 2021 Apr; 12(1):2254. PubMed ID: 33859190
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.