These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 34186018)

  • 21. A New Noncoding RNA Arranges Bacterial Chromosome Organization.
    Qian Z; Macvanin M; Dimitriadis EK; He X; Zhurkin V; Adhya S
    mBio; 2015 Aug; 6(4):. PubMed ID: 26307168
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Lack of the H-NS Protein Results in Extended and Aberrantly Positioned DNA during Chromosome Replication and Segregation in Escherichia coli.
    Helgesen E; Fossum-Raunehaug S; Skarstad K
    J Bacteriol; 2016 Apr; 198(8):1305-16. PubMed ID: 26858102
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Entropy-based mechanism of ribosome-nucleoid segregation in E. coli cells.
    Mondal J; Bratton BP; Li Y; Yethiraj A; Weisshaar JC
    Biophys J; 2011 Jun; 100(11):2605-13. PubMed ID: 21641305
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A model for Escherichia coli chromosome packaging supports transcription factor-induced DNA domain formation.
    Fritsche M; Li S; Heermann DW; Wiggins PA
    Nucleic Acids Res; 2012 Feb; 40(3):972-80. PubMed ID: 21976727
    [TBL] [Abstract][Full Text] [Related]  

  • 25. [Structure of bacterial chromosome].
    Kois A; Swiatek M; Zakrzewska-Czerwińska J
    Postepy Hig Med Dosw (Online); 2007 Oct; 61():534-40. PubMed ID: 17928796
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Structural and physical aspects of bacterial chromosome segregation.
    Woldringh CL; Nanninga N
    J Struct Biol; 2006 Nov; 156(2):273-83. PubMed ID: 16828313
    [TBL] [Abstract][Full Text] [Related]  

  • 27. H-NS promotes looped domain formation in the bacterial chromosome.
    Noom MC; Navarre WW; Oshima T; Wuite GJ; Dame RT
    Curr Biol; 2007 Nov; 17(21):R913-4. PubMed ID: 17983565
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Growth phase-dependent variation in protein composition of the Escherichia coli nucleoid.
    Ali Azam T; Iwata A; Nishimura A; Ueda S; Ishihama A
    J Bacteriol; 1999 Oct; 181(20):6361-70. PubMed ID: 10515926
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Mutual suppression of mukB and seqA phenotypes might arise from their opposing influences on the Escherichia coli nucleoid structure.
    Weitao T; Nordström K; Dasgupta S
    Mol Microbiol; 1999 Oct; 34(1):157-68. PubMed ID: 10540294
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Prokaryotic DNA in nucleoid structure.
    Pettijohn DE
    CRC Crit Rev Biochem; 1976 Nov; 4(2):175-202. PubMed ID: 827418
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Mechanism of chromosome compaction and looping by the Escherichia coli nucleoid protein Fis.
    Skoko D; Yoo D; Bai H; Schnurr B; Yan J; McLeod SM; Marko JF; Johnson RC
    J Mol Biol; 2006 Dec; 364(4):777-98. PubMed ID: 17045294
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Strong intranucleoid interactions organize the Escherichia coli chromosome into a nucleoid filament.
    Wiggins PA; Cheveralls KC; Martin JS; Lintner R; Kondev J
    Proc Natl Acad Sci U S A; 2010 Mar; 107(11):4991-5. PubMed ID: 20194778
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The role of nucleoid-associated proteins in the organization and compaction of bacterial chromatin.
    Dame RT
    Mol Microbiol; 2005 May; 56(4):858-70. PubMed ID: 15853876
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Interpretation of organizational role of proteins on E. coli nucleoid via Hi-C integrated model.
    Wasim A; Gupta A; Bera P; Mondal J
    Biophys J; 2023 Jan; 122(1):63-81. PubMed ID: 36435970
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The architectural role of nucleoid-associated proteins in the organization of bacterial chromatin: a molecular perspective.
    Luijsterburg MS; Noom MC; Wuite GJ; Dame RT
    J Struct Biol; 2006 Nov; 156(2):262-72. PubMed ID: 16879983
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Single-particle tracking reveals that free ribosomal subunits are not excluded from the Escherichia coli nucleoid.
    Sanamrad A; Persson F; Lundius EG; Fange D; Gynnå AH; Elf J
    Proc Natl Acad Sci U S A; 2014 Aug; 111(31):11413-8. PubMed ID: 25056965
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Macromolecular crowding can account for RNase-sensitive constraint of bacterial nucleoid structure.
    Foley PL; Wilson DB; Shuler ML
    Biochem Biophys Res Commun; 2010 Apr; 395(1):42-7. PubMed ID: 20346349
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Computational analyses of transcriptomic data reveal the dynamic organization of the Escherichia coli chromosome under different conditions.
    Ma Q; Yin Y; Schell MA; Zhang H; Li G; Xu Y
    Nucleic Acids Res; 2013 Jun; 41(11):5594-603. PubMed ID: 23599001
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Imaging of Bacterial Chromosome Organization by 3D Super-Resolution Microscopy.
    Le Gall A; Cattoni DI; Nollmann M
    Methods Mol Biol; 2017; 1624():253-268. PubMed ID: 28842889
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Facilitated Dissociation of a Nucleoid Protein from the Bacterial Chromosome.
    Hadizadeh N; Johnson RC; Marko JF
    J Bacteriol; 2016 Jun; 198(12):1735-42. PubMed ID: 27044624
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.