These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

274 related articles for article (PubMed ID: 34186277)

  • 1. Linear and nonlinear viscoelasticity of concentrated thermoresponsive microgel suspensions.
    Chaudhary G; Ghosh A; Kang JG; Braun PV; Ewoldt RH; Schweizer KS
    J Colloid Interface Sci; 2021 Nov; 601():886-898. PubMed ID: 34186277
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Linear and nonlinear rheology and structural relaxation in dense glassy and jammed soft repulsive pNIPAM microgel suspensions.
    Ghosh A; Chaudhary G; Kang JG; Braun PV; Ewoldt RH; Schweizer KS
    Soft Matter; 2019 Jan; 15(5):1038-1052. PubMed ID: 30657517
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Are thermoresponsive microgels model systems for concentrated colloidal suspensions? A rheology and small-angle neutron scattering study.
    Stieger M; Pedersen JS; Lindner P; Richtering W
    Langmuir; 2004 Aug; 20(17):7283-92. PubMed ID: 15301516
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Viscoelasticity of dense suspensions of thermosensitive microgel mixtures undergoing colloidal gelation.
    Minami S; Watanabe T; Suzuki D; Urayama K
    Soft Matter; 2018 Feb; 14(9):1596-1607. PubMed ID: 29411837
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Revisit to phase diagram of poly(N-isopropylacrylamide) microgel suspensions by mechanical spectroscopy.
    Wang H; Wu X; Zhu Z; Liu CS; Zhang Z
    J Chem Phys; 2014 Jan; 140(2):024908. PubMed ID: 24437912
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Impact of polyelectrolyte adsorption on the rheology of concentrated poly(
    Elancheliyan R; Chauveau E; Truzzolillo D
    Soft Matter; 2023 Jun; 19(25):4794-4807. PubMed ID: 37318318
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Colloidal and polymeric contributions to the yielding of dense microgel suspensions.
    Lara-Peña MA; Licea-Claverie A; Zapata-González I; Laurati M
    J Colloid Interface Sci; 2021 Apr; 587():437-445. PubMed ID: 33383433
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Physical aging and phase behavior of multiresponsive microgel colloidal dispersions.
    Meng Z; Cho JK; Breedveld V; Lyon LA
    J Phys Chem B; 2009 Apr; 113(14):4590-9. PubMed ID: 19298093
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pectin-based microgels for rheological modification in the dilute to concentrated regimes.
    Stubley SJ; Cayre OJ; Murray BS; Celigueta Torres I
    J Colloid Interface Sci; 2022 Dec; 628(Pt A):684-695. PubMed ID: 35944299
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Unusual temperature-induced swelling of ionizable poly(N-isopropylacrylamide)-based microgels: experimental and theoretical insights into its molecular origin.
    Giussi JM; Velasco MI; Longo GS; Acosta RH; Azzaroni O
    Soft Matter; 2015 Dec; 11(45):8879-86. PubMed ID: 26400774
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural properties of thermoresponsive poly(N-isopropylacrylamide)-poly(ethyleneglycol) microgels.
    Clara-Rahola J; Fernandez-Nieves A; Sierra-Martin B; South AB; Lyon LA; Kohlbrecher J; Fernandez Barbero A
    J Chem Phys; 2012 Jun; 136(21):214903. PubMed ID: 22697568
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microstructure-driven self-assembly and rheological properties of multi-responsive soft microgel suspensions.
    Dieuzy E; Aguirre G; Auguste S; Chougrani K; Alard V; Billon L; Derail C
    J Colloid Interface Sci; 2021 Jan; 581(Pt B):806-815. PubMed ID: 32814199
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Behavior and mechanics of dense microgel suspensions.
    Nikolov SV; Fernandez-Nieves A; Alexeev A
    Proc Natl Acad Sci U S A; 2020 Nov; 117(44):27096-27103. PubMed ID: 33077596
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Viscosity of soft spherical micro-hydrogel suspensions.
    Shewan HM; Stokes JR
    J Colloid Interface Sci; 2015 Mar; 442():75-81. PubMed ID: 25521552
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Poly(N-isopropylacrylamide) microgels at the oil-water interface: temperature effect.
    Li Z; Richtering W; Ngai T
    Soft Matter; 2014 Sep; 10(33):6182-91. PubMed ID: 25010011
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tuning the Size of Thermoresponsive Poly(N-Isopropyl Acrylamide) Grafted Silica Microgels.
    Nun N; Hinrichs S; Schroer MA; Sheyfer D; Grübel G; Fischer B
    Gels; 2017 Sep; 3(3):. PubMed ID: 30920530
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dichotomous behaviors of stress and dielectric relaxations in dense suspensions of swollen thermoreversible hydrogel microparticles.
    Misra C; Gadige P; Bandyopadhyay R
    J Colloid Interface Sci; 2023 Jan; 630(Pt A):223-231. PubMed ID: 36242882
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Flow properties reveal the particle-to-polymer transition of ultra-low crosslinked microgels.
    Scotti A; Brugnoni M; G Lopez C; Bochenek S; Crassous JJ; Richtering W
    Soft Matter; 2020 Jan; 16(3):668-678. PubMed ID: 31815271
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of particle stiffness and surface properties on the non-linear viscoelasticity of dense microgel suspensions.
    Vialetto J; Ramakrishna SN; Isa L; Laurati M
    J Colloid Interface Sci; 2024 Oct; 672():814-823. PubMed ID: 38878623
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Relationship between particle elasticity, glass fragility, and structural relaxation in dense microgel suspensions.
    Seekell Iii RP; Sarangapani PS; Zhang Z; Zhu Y
    Soft Matter; 2015 Jul; 11(27):5485-91. PubMed ID: 26061613
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.