These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

277 related articles for article (PubMed ID: 34186277)

  • 21. Temperature-Controlled Adhesion to Carbohydrate Functionalized Microgel Films: An E. coli and Lectin Binding Study.
    Paul TJ; Strzelczyk AK; Schmidt S
    Macromol Biosci; 2021 Apr; 21(4):e2000386. PubMed ID: 33605076
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Crystallization behavior of soft, attractive microgels.
    Meng Z; Cho JK; Debord S; Breedveld V; Lyon LA
    J Phys Chem B; 2007 Jun; 111(25):6992-7. PubMed ID: 17536855
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Comparison of the Responsivity of Solution-Suspended and Surface-Bound Poly(N-isopropylacrylamide)-Based Microgels for Sensing Applications.
    Li W; Hu L; Zhu J; Li D; Luan Y; Xu W; Serpe MJ
    ACS Appl Mater Interfaces; 2017 Aug; 9(31):26539-26548. PubMed ID: 28745477
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Supramolecular Hydrogel Based on pNIPAm Microgels Connected via Host⁻Guest Interactions.
    Antoniuk I; Kaczmarek D; Kardos A; Varga I; Amiel C
    Polymers (Basel); 2018 May; 10(6):. PubMed ID: 30966600
    [TBL] [Abstract][Full Text] [Related]  

  • 25. FRET-derived ratiometric fluorescent K+ sensors fabricated from thermoresponsive poly(N-isopropylacrylamide) microgels labeled with crown ether moieties.
    Yin J; Li C; Wang D; Liu S
    J Phys Chem B; 2010 Sep; 114(38):12213-20. PubMed ID: 20825175
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Doubly responsive polymer-microgel composites: rheology and structure.
    Monti F; Fu SY; Iliopoulos I; Cloitre M
    Langmuir; 2008 Oct; 24(20):11474-82. PubMed ID: 18781781
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Physics in ordered and disordered colloidal matter composed of poly(N-isopropylacrylamide) microgel particles.
    Yunker PJ; Chen K; Gratale MD; Lohr MA; Still T; Yodh AG
    Rep Prog Phys; 2014 May; 77(5):056601. PubMed ID: 24801604
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Mechanics at the glass-to-gel transition of thermoresponsive microgel suspensions.
    Appel J; Fölker B; Sprakel J
    Soft Matter; 2016 Mar; 12(9):2515-22. PubMed ID: 26843322
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Interparticle interactions in concentrated suspensions and their bulk (rheological) properties.
    Tadros T
    Adv Colloid Interface Sci; 2011 Oct; 168(1-2):263-77. PubMed ID: 21632031
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Temperature-Induced Assembly of Monodisperse, Covalently Cross-Linked, and Degradable Poly(N-isopropylacrylamide) Microgels Based on Oligomeric Precursors.
    Sivakumaran D; Mueller E; Hoare T
    Langmuir; 2015 Jun; 31(21):5767-78. PubMed ID: 25977976
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Viscoelasticity of non-colloidal hydrogel particle suspensions at the liquid-solid transition.
    Shewan HM; Yakubov GE; Bonilla MR; Stokes JR
    Soft Matter; 2021 May; 17(19):5073-5083. PubMed ID: 33929481
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Tacticity-Dependent Interchain Interactions of Poly(N-Isopropylacrylamide) in Water: Toward the Molecular Dynamics Simulation of a Thermoresponsive Microgel.
    Paradossi G; Chiessi E
    Gels; 2017 Apr; 3(2):. PubMed ID: 30920510
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Measuring the counterion cloud of soft microgels using SANS with contrast variation.
    Zhou B; Gasser U; Fernandez-Nieves A
    Nat Commun; 2023 Jul; 14(1):3827. PubMed ID: 37419879
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Bulk and interfacial stresses in suspensions of soft and hard colloids.
    Truzzolillo D; Roger V; Dupas C; Mora S; Cipelletti L
    J Phys Condens Matter; 2015 May; 27(19):194103. PubMed ID: 25923511
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Synthetic and biopolymeric microgels: Review of similarities and difference in behaviour in bulk phases and at interfaces.
    Akgonullu DZ; Murray BS; Connell SD; Fang Y; Linter B; Sarkar A
    Adv Colloid Interface Sci; 2023 Oct; 320():102983. PubMed ID: 37690329
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Unveiling the structural relaxation of microgel suspensions at hydrophilic and hydrophobic interfaces.
    Liu W; Zhu Y; Li Y; Han J; Ngai T
    J Colloid Interface Sci; 2023 Mar; 633():948-958. PubMed ID: 36509038
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Facile assembly of 3D binary colloidal crystals from soft microgel spheres.
    Liu Y; Guan Y; Zhang Y
    Macromol Rapid Commun; 2014 Mar; 35(6):630-4. PubMed ID: 24497429
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Spontaneous deswelling of microgels controlled by counterion clouds.
    Gasser U; Scotti A; Fernandez-Nieves A
    Phys Rev E; 2019 Apr; 99(4-1):042602. PubMed ID: 31108698
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Microgel particles containing methacrylic acid: pH-triggered swelling behaviour and potential for biomaterial application.
    Lally S; Mackenzie P; LeMaitre CL; Freemont TJ; Saunders BR
    J Colloid Interface Sci; 2007 Dec; 316(2):367-75. PubMed ID: 17765913
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Thermal Behaviour of Microgels Composed of Interpenetrating Polymer Networks of Poly(
    Franco S; Buratti E; Nigro V; Bertoldo M; Ruzicka B; Angelini R
    Polymers (Basel); 2021 Dec; 14(1):. PubMed ID: 35012137
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.