These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
124 related articles for article (PubMed ID: 34186285)
1. Validation of the computational model of a coronary stent: a fundamental step towards in silico trials. Antonini L; Mandelli L; Berti F; Pennati G; Petrini L J Mech Behav Biomed Mater; 2021 Oct; 122():104644. PubMed ID: 34186285 [TBL] [Abstract][Full Text] [Related]
2. Finite element analysis and stent design: Reduction of dogboning. De Beule M; Van Impe R; Verhegghe B; Segers P; Verdonck P Technol Health Care; 2006; 14(4-5):233-41. PubMed ID: 17065746 [TBL] [Abstract][Full Text] [Related]
3. Feasibility of a priori numerical assessment of plaque scaffolding after carotid artery stenting in clinical routine: proof of concept. Iannaccone F; De Bock S; De Beule M; Vermassen F; Van Herzeele I; Verdonck P; Segers P; Verhegghe B Int J Artif Organs; 2014 Dec; 37(12):928-39. PubMed ID: 25588766 [TBL] [Abstract][Full Text] [Related]
4. Influence of the Adopted Balloon Modeling Strategies in the Stent Deployment Procedure: An In-Silico Analysis. Gomes IV; Puga H; Alves JL Cardiovasc Eng Technol; 2020 Aug; 11(4):469-480. PubMed ID: 32557187 [TBL] [Abstract][Full Text] [Related]
5. How to Validate Berti F; Antonini L; Poletti G; Fiuza C; Vaughan TJ; Migliavacca F; Petrini L; Pennati G Front Med Technol; 2021; 3():702656. PubMed ID: 35047942 [TBL] [Abstract][Full Text] [Related]
6. Impact of carotid stent cell design on vessel scaffolding: a case study comparing experimental investigation and numerical simulations. Conti M; Van Loo D; Auricchio F; De Beule M; De Santis G; Verhegghe B; Pirrelli S; Odero A J Endovasc Ther; 2011 Jun; 18(3):397-406. PubMed ID: 21679082 [TBL] [Abstract][Full Text] [Related]
7. Analysis of the stent expansion in a stenosed artery using finite element method: application to stent versus stent study. Imani SM; Goudarzi AM; Ghasemi SE; Kalani A; Mahdinejad J Proc Inst Mech Eng H; 2014 Oct; 228(10):996-1004. PubMed ID: 25406228 [TBL] [Abstract][Full Text] [Related]
8. Sequential Structural and Fluid Dynamics Analysis of Balloon-Expandable Coronary Stents: A Multivariable Statistical Analysis. Martin D; Boyle F Cardiovasc Eng Technol; 2015 Sep; 6(3):314-28. PubMed ID: 26577363 [TBL] [Abstract][Full Text] [Related]
9. Fast simulation of stent deployment with plastic beam elements. Krewcun C; Sarry L; Combaret N; Pery E Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():6968-6974. PubMed ID: 31947442 [TBL] [Abstract][Full Text] [Related]
10. Finite Element Simulations of the ID Venous System to Treat Venous Compression Disorders: From Model Validation to Realistic Implant Prediction. Zaccaria A; Migliavacca F; Contassot D; Heim F; Chakfe N; Pennati G; Petrini L Ann Biomed Eng; 2021 Jun; 49(6):1493-1506. PubMed ID: 33398616 [TBL] [Abstract][Full Text] [Related]
11. Simulation of a balloon expandable stent in a realistic coronary artery-Determination of the optimum modelling strategy. Zahedmanesh H; John Kelly D; Lally C J Biomech; 2010 Aug; 43(11):2126-32. PubMed ID: 20452594 [TBL] [Abstract][Full Text] [Related]
12. Design optimization of stent and its dilatation balloon using kriging surrogate model. Li H; Liu T; Wang M; Zhao D; Qiao A; Wang X; Gu J; Li Z; Zhu B Biomed Eng Online; 2017 Jan; 16(1):13. PubMed ID: 28086895 [TBL] [Abstract][Full Text] [Related]
13. Experimentally validated simulation of coronary stents considering different dogboning ratios and asymmetric stent positioning. Wiesent L; Schultheiß U; Schmid C; Schratzenstaller T; Nonn A PLoS One; 2019; 14(10):e0224026. PubMed ID: 31626662 [TBL] [Abstract][Full Text] [Related]
14. Realistic finite element-based stent design: the impact of balloon folding. De Beule M; Mortier P; Carlier SG; Verhegghe B; Van Impe R; Verdonck P J Biomech; 2008; 41(2):383-9. PubMed ID: 17920068 [TBL] [Abstract][Full Text] [Related]
15. Finite element analysis of balloon-expandable coronary stent deployment: influence of angioplasty balloon configuration. Martin D; Boyle F Int J Numer Method Biomed Eng; 2013 Nov; 29(11):1161-75. PubMed ID: 23696255 [TBL] [Abstract][Full Text] [Related]
16. Assessment of tissue prolapse after balloon-expandable stenting: influence of stent cell geometry. Capelli C; Gervaso F; Petrini L; Dubini G; Migliavacca F Med Eng Phys; 2009 May; 31(4):441-7. PubMed ID: 19109049 [TBL] [Abstract][Full Text] [Related]
17. Mechanical behavior of coronary stents investigated through the finite element method. Migliavacca F; Petrini L; Colombo M; Auricchio F; Pietrabissa R J Biomech; 2002 Jun; 35(6):803-11. PubMed ID: 12021000 [TBL] [Abstract][Full Text] [Related]
18. Multi-objective optimization of coronary stent using Kriging surrogate model. Li H; Gu J; Wang M; Zhao D; Li Z; Qiao A; Zhu B Biomed Eng Online; 2016 Dec; 15(Suppl 2):148. PubMed ID: 28155700 [TBL] [Abstract][Full Text] [Related]
19. Cardiovascular stent design and vessel stresses: a finite element analysis. Lally C; Dolan F; Prendergast PJ J Biomech; 2005 Aug; 38(8):1574-81. PubMed ID: 15958213 [TBL] [Abstract][Full Text] [Related]
20. Reliable Numerical Models of Nickel-Titanium Stents: How to Deduce the Specific Material Properties from Testing Real Devices. Berti F; Bridio S; Luraghi G; Pant S; Allegretti D; Pennati G; Petrini L Ann Biomed Eng; 2022 Apr; 50(4):467-481. PubMed ID: 35212855 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]