These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 34186526)

  • 1. Correct scaling of the correlation length from a theory for concentrated electrolytes.
    Ciach A; Patsahan O
    J Phys Condens Matter; 2021 Jul; 33(37):. PubMed ID: 34186526
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The intimate relationship between the dielectric response and the decay of intermolecular correlations and surface forces in electrolytes.
    Kjellander R
    Soft Matter; 2019 Jul; 15(29):5866-5895. PubMed ID: 31243425
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Scaling Analysis of the Screening Length in Concentrated Electrolytes.
    Lee AA; Perez-Martinez CS; Smith AM; Perkin S
    Phys Rev Lett; 2017 Jul; 119(2):026002. PubMed ID: 28753344
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Screening Lengths in Ionic Fluids.
    Coupette F; Lee AA; Härtel A
    Phys Rev Lett; 2018 Aug; 121(7):075501. PubMed ID: 30169089
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Underscreening and hidden ion structures in large scale simulations of concentrated electrolytes.
    Krucker-Velasquez E; Swan JW
    J Chem Phys; 2021 Oct; 155(13):134903. PubMed ID: 34624965
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Wave mechanics in an ionic liquid mixture.
    Groves TS; Perkin S
    Faraday Discuss; 2024 Oct; 253(0):193-211. PubMed ID: 39045840
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A multiple decay-length extension of the Debye-Hückel theory: to achieve high accuracy also for concentrated solutions and explain under-screening in dilute symmetric electrolytes.
    Kjellander R
    Phys Chem Chem Phys; 2020 Oct; 22(41):23952-23985. PubMed ID: 33073810
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Primitive model electrolytes in the near and far field: Decay lengths from DFT and simulations.
    Cats P; Evans R; Härtel A; van Roij R
    J Chem Phys; 2021 Mar; 154(12):124504. PubMed ID: 33810662
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A screening of results on the decay length in concentrated electrolytes.
    Jäger H; Schlaich A; Yang J; Lian C; Kondrat S; Holm C
    Faraday Discuss; 2023 Oct; 246(0):520-539. PubMed ID: 37602784
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular multivalent electrolytes: microstructure and screening lengths.
    González-Mozuelos P; Yeom MS; Olvera de la Cruz M
    Eur Phys J E Soft Matter; 2005 Feb; 16(2):167-78. PubMed ID: 15729508
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Focus Article: Oscillatory and long-range monotonic exponential decays of electrostatic interactions in ionic liquids and other electrolytes: The significance of dielectric permittivity and renormalized charges.
    Kjellander R
    J Chem Phys; 2018 May; 148(19):193701. PubMed ID: 30307204
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transition from non-monotonic to monotonic electrical diffuse layers: impact of confinement on ionic liquids.
    Yochelis A
    Phys Chem Chem Phys; 2014 Feb; 16(7):2836-41. PubMed ID: 24419152
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interfacial structure and structural forces in mixtures of ionic liquid with a polar solvent.
    Coles SW; Smith AM; Fedorov MV; Hausen F; Perkin S
    Faraday Discuss; 2018 Jan; 206():427-442. PubMed ID: 28933495
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Charge fluctuations and correlation lengths in finite electrolytes.
    Kim YC; Fisher ME
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 May; 77(5 Pt 1):051502. PubMed ID: 18643069
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structure of molten NaCl and the decay of the pair-correlations.
    Zeidler A; Salmon PS; Usuki T; Kohara S; Fischer HE; Wilson M
    J Chem Phys; 2022 Sep; 157(9):094504. PubMed ID: 36075708
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Correlation Length in Concentrated Electrolytes: Insights from All-Atom Molecular Dynamics Simulations.
    Coles SW; Park C; Nikam R; Kanduč M; Dzubiella J; Rotenberg B
    J Phys Chem B; 2020 Mar; 124(9):1778-1786. PubMed ID: 32031810
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Electrostatic Screening Length in Concentrated Electrolytes Increases with Concentration.
    Smith AM; Lee AA; Perkin S
    J Phys Chem Lett; 2016 Jun; 7(12):2157-63. PubMed ID: 27216986
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structure and Screening in Confined Electrolytes: The Role of Ion Association.
    Wang S; Tao H; Yang J; Cheng J; Liu H; Lian C
    J Phys Chem Lett; 2024 Jul; 15(28):7147-7153. PubMed ID: 38959446
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Underscreening in concentrated electrolytes.
    Lee AA; Perez-Martinez CS; Smith AM; Perkin S
    Faraday Discuss; 2017 Jul; 199():239-259. PubMed ID: 28466925
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Binary non-additive hard sphere mixtures: fluid demixing, asymptotic decay of correlations and free fluid interfaces.
    Hopkins P; Schmidt M
    J Phys Condens Matter; 2010 Aug; 22(32):325108. PubMed ID: 21386490
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.