These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 34187193)

  • 1. Insect flight metabolic rate revealed by bolus injection of the stable isotope
    Urca T; Levin E; Ribak G
    Proc Biol Sci; 2021 Jun; 288(1953):20211082. PubMed ID: 34187193
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Intraspecific scaling and early life history determine the cost of free-flight in a large beetle (Batocera rufomaculata).
    Urca T; Levin E; Gefen E; Ribak G
    Insect Sci; 2024 Apr; 31(2):524-532. PubMed ID: 37469199
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Metabolic cost of flight and aerobic efficiency in the rose chafer, Protaetia cuprea (Cetoniinae).
    Urca T; Levin E; Ribak G
    Insect Sci; 2022 Oct; 29(5):1361-1372. PubMed ID: 35142427
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Going against the flow: bumblebees prefer to fly upwind and display more variable kinematics when flying downwind.
    Combes SA; Gravish N; Gagliardi SF
    J Exp Biol; 2023 Apr; 226(Suppl_1):. PubMed ID: 37070947
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The power of feeder-mask respirometry as a method for examining hummingbird energetics.
    Welch KC
    Comp Biochem Physiol A Mol Integr Physiol; 2011 Mar; 158(3):276-86. PubMed ID: 20656051
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Simple Flight Mill for the Study of Tethered Flight in Insects.
    Attisano A; Murphy JT; Vickers A; Moore PJ
    J Vis Exp; 2015 Dec; (106):e53377. PubMed ID: 26709537
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optic flow-based collision-free strategies: From insects to robots.
    Serres JR; Ruffier F
    Arthropod Struct Dev; 2017 Sep; 46(5):703-717. PubMed ID: 28655645
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mimicking nature's flyers: a review of insect-inspired flying robots.
    Phan HV; Park HC
    Curr Opin Insect Sci; 2020 Dec; 42():70-75. PubMed ID: 33010474
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Automatic tracking of free-flying insects using a cable-driven robot.
    Pannequin R; Jouaiti M; Boutayeb M; Lucas P; Martinez D
    Sci Robot; 2020 Jun; 5(43):. PubMed ID: 33022614
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High speed visual insect swarm tracker (Hi-VISTA) used to identify the effects of confinement on individual insect flight.
    Ahmed I; Faruque IA
    Bioinspir Biomim; 2022 Jun; 17(4):. PubMed ID: 35439741
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of the cost of short flights in a nectarivorous and a non-nectarivorous bird.
    Hambly C; Pinshow B; Wiersma P; Verhulst S; Piertney SB; Harper EJ; Speakman JR
    J Exp Biol; 2004 Oct; 207(Pt 22):3959-68. PubMed ID: 15472026
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phasmid species that inhabit colder environments are less likely to have the ability to fly.
    Emberts Z
    Ecol Evol; 2023 Jul; 13(7):e10290. PubMed ID: 37484936
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The function of pitching in Beetle's flight revealed by insect-wearable backpack.
    Fu F; Li Y; Wang H; Li B; Sato H
    Biosens Bioelectron; 2022 Feb; 198():113818. PubMed ID: 34861525
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantifying interspecific variation in dispersal ability of noctuid moths using an advanced tethered flight technique.
    Jones HB; Lim KS; Bell JR; Hill JK; Chapman JW
    Ecol Evol; 2016 Jan; 6(1):181-90. PubMed ID: 26811783
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Odour plumes and odour-mediated flight in insects.
    Cardé RT
    Ciba Found Symp; 1996; 200():54-66; discussion 66-70. PubMed ID: 8894290
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Measuring energy expenditure in birds using bolus injections of 13C-labelled Na-bicarbonate.
    Hambly C; Voigt CC
    Comp Biochem Physiol A Mol Integr Physiol; 2011 Mar; 158(3):323-8. PubMed ID: 20510385
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Wing inertia as a cause of aerodynamically uneconomical flight with high angles of attack in hovering insects.
    Phan HV; Park HC
    J Exp Biol; 2018 Oct; 221(Pt 19):. PubMed ID: 30111558
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanisms of thermal balance in flying Centris pallida (Hymenoptera: Anthophoridae).
    Roberts SP; Harrison JF; Hadley NF
    J Exp Biol; 1998 Aug; 201(Pt 15):2321-31. PubMed ID: 9662503
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Active anemosensing hypothesis: how flying insects could estimate ambient wind direction through sensory integration and active movement.
    van Breugel F; Jewell R; Houle J
    J R Soc Interface; 2022 Aug; 19(193):20220258. PubMed ID: 36043287
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Size effects on insect hovering aerodynamics: an integrated computational study.
    Liu H; Aono H
    Bioinspir Biomim; 2009 Mar; 4(1):015002. PubMed ID: 19258688
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.