These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 34188180)

  • 21. Dual oxidase-dependent reactive oxygen species are involved in the regulation of UGT overexpression-mediated clothianidin resistance in the brown planthopper, Nilaparvata lugens.
    Zhang Y; Liu C; Jin R; Wang Y; Cai T; Ren Z; Ma K; He S; Lee KS; Jin BR; Li J; Wan H
    Pest Manag Sci; 2021 Sep; 77(9):4159-4167. PubMed ID: 33934482
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Characterization of heat shock protein 70 transcript from Nilaparvata lugens (Stål): Its response to temperature and insecticide stresses.
    Lu K; Chen X; Liu W; Zhang Z; Wang Y; You K; Li Y; Zhang R; Zhou Q
    Pestic Biochem Physiol; 2017 Oct; 142():102-110. PubMed ID: 29107232
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Long-term field insecticide susceptibility data and laboratory experiments reveal evidence for cross resistance to other neonicotinoids in the imidacloprid-resistant brown planthopper Nilaparvata lugens.
    Fujii T; Sanada-Morimura S; Oe T; Ide M; Van Thanh D; Van Chien H; Van Tuong P; Loc PM; Cuong LQ; Liu ZW; Zhu ZR; Li JH; Wu G; Huang SH; Estoy GF; Sonoda S; Matsumura M
    Pest Manag Sci; 2020 Feb; 76(2):480-486. PubMed ID: 31240832
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Energy Reserve Compensating for Trade-Off Between Metabolic Resistance and Life History Traits in the Brown Planthopper (Hemiptera: Delphacidae).
    Fujii T; Sanada-Morimura S; Matsukura K; Van Chien H; Cuong LQ; Loc PM; Estoy GF; Matsumura M
    J Econ Entomol; 2020 Aug; 113(4):1963-1971. PubMed ID: 32533176
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Insecticide resistance by a host-symbiont reciprocal detoxification.
    Sato Y; Jang S; Takeshita K; Itoh H; Koike H; Tago K; Hayatsu M; Hori T; Kikuchi Y
    Nat Commun; 2021 Nov; 12(1):6432. PubMed ID: 34741016
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Interaction of Arsenophonus with Wolbachia in Nilaparvata lugens.
    Guo H; Wang N; Niu H; Zhao D; Zhang Z
    BMC Ecol Evol; 2021 Feb; 21(1):31. PubMed ID: 33610188
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Differential metabolism of neonicotinoids by brown planthopper, Nilaparvata lugens, CYP6ER1 variants.
    Hamada A; Stam L; Nakao T; Kawashima M; Banba S
    Pestic Biochem Physiol; 2020 May; 165():104538. PubMed ID: 32359560
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Microbiota-Mediated Modulation of Organophosphate Insecticide Toxicity by Species-Dependent Interactions with Lactobacilli in a Drosophila melanogaster Insect Model.
    Daisley BA; Trinder M; McDowell TW; Collins SL; Sumarah MW; Reid G
    Appl Environ Microbiol; 2018 May; 84(9):. PubMed ID: 29475860
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Molecular basis for insecticide-enhanced thermotolerance in the brown planthopper Nilaparvata lugens Stål (Hemiptera:Delphacidae).
    Ge LQ; Huang LJ; Yang GQ; Song QS; Stanley D; Gurr GM; Wu JC
    Mol Ecol; 2013 Nov; 22(22):5624-34. PubMed ID: 24303791
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The influence of temperature on the toxicity of insecticides to Nilaparvata lugens (Stål).
    Mao K; Jin R; Li W; Ren Z; Qin X; He S; Li J; Wan H
    Pestic Biochem Physiol; 2019 May; 156():80-86. PubMed ID: 31027584
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Overexpression of a cytochrome P450 monooxygenase, CYP6ER1, is associated with resistance to imidacloprid in the brown planthopper, Nilaparvata lugens.
    Bass C; Carvalho RA; Oliphant L; Puinean AM; Field LM; Nauen R; Williamson MS; Moores G; Gorman K
    Insect Mol Biol; 2011 Dec; 20(6):763-73. PubMed ID: 21929695
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Bacterial symbionts of the brown planthopper, Nilaparvata lugens (Homoptera: Delphacidae).
    Tang M; Lv L; Jing S; Zhu L; He G
    Appl Environ Microbiol; 2010 Mar; 76(6):1740-5. PubMed ID: 20097822
    [TBL] [Abstract][Full Text] [Related]  

  • 33. RNA interference of NADPH-cytochrome P450 reductase of the rice brown planthopper, Nilaparvata lugens, increases susceptibility to insecticides.
    Liu S; Liang QM; Zhou WW; Jiang YD; Zhu QZ; Yu H; Zhang CX; Gurr GM; Zhu ZR
    Pest Manag Sci; 2015 Jan; 71(1):32-9. PubMed ID: 24515640
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Contribution of Glutathione S-Transferases to Imidacloprid Resistance in
    Yang B; Lin X; Yu N; Gao H; Zhang Y; Liu W; Liu Z
    J Agric Food Chem; 2020 Dec; 68(52):15403-15408. PubMed ID: 33337883
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Bacteriocyte-like cells harbour Wolbachia in the ovary of Drosophila melanogaster (Insecta, Diptera) and Zyginidia pullula (Insecta, Hemiptera).
    Sacchi L; Genchi M; Clementi E; Negri I; Alma A; Ohler S; Sassera D; Bourtzis K; Bandi C
    Tissue Cell; 2010 Oct; 42(5):328-33. PubMed ID: 20817243
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Current susceptibilities of brown planthopper Nilaparvata lugens to triflumezopyrim and other frequently used insecticides in China.
    Liao X; Xu PF; Gong PP; Wan H; Li JH
    Insect Sci; 2021 Feb; 28(1):115-126. PubMed ID: 32043703
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Unintended consequences: Disrupting microbial communities of Nilaparvata lugens with non-target pesticides.
    Ren Z; Cai T; Wan Y; Zeng Q; Li C; Zhang J; Ma K; He S; Li J; Wan H
    Pestic Biochem Physiol; 2023 Aug; 194():105522. PubMed ID: 37532306
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Characterization of a novel superoxide dismutase in Nilaparvata lugens.
    Yamamoto K; Yamaguchi M
    Arch Insect Biochem Physiol; 2022 Feb; 109(2):e21862. PubMed ID: 34897778
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Neonicotinoid resistance in rice brown planthopper, Nilaparvata lugens.
    Gorman K; Liu Z; Denholm I; Brüggen KU; Nauen R
    Pest Manag Sci; 2008 Nov; 64(11):1122-5. PubMed ID: 18803175
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The Cost of Metabolic Interactions in Symbioses between Insects and Bacteria with Reduced Genomes.
    Ankrah NYD; Chouaia B; Douglas AE
    mBio; 2018 Sep; 9(5):. PubMed ID: 30254121
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.