These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

278 related articles for article (PubMed ID: 34188205)

  • 1. Genome editing to define the function of risk loci and variants in rheumatic disease.
    Baglaenko Y; Macfarlane D; Marson A; Nigrovic PA; Raychaudhuri S
    Nat Rev Rheumatol; 2021 Aug; 17(8):462-474. PubMed ID: 34188205
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Editing GWAS: experimental approaches to dissect and exploit disease-associated genetic variation.
    Rao S; Yao Y; Bauer DE
    Genome Med; 2021 Mar; 13(1):41. PubMed ID: 33691767
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Use of next-generation DNA sequencing to analyze genetic variants in rheumatic disease.
    Wiley GB; Kelly JA; Gaffney PM
    Arthritis Res Ther; 2014; 16(6):490. PubMed ID: 25789374
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Translating genomic insights into cardiovascular medicine: Opportunities and challenges of CRISPR-Cas9.
    Zhang Y; Karakikes I
    Trends Cardiovasc Med; 2021 Aug; 31(6):341-348. PubMed ID: 32603681
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Validation of prostate cancer risk variants rs10993994 and rs7098889 by CRISPR/Cas9 mediated genome editing.
    Wang X; Hayes JE; Xu X; Gao X; Mehta D; Lilja HG; Klein RJ
    Gene; 2021 Feb; 768():145265. PubMed ID: 33122083
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Translating GWAS in rheumatic disease: approaches to establishing mechanism and function for genetic associations with ankylosing spondylitis.
    Osgood JA; Knight JC
    Brief Funct Genomics; 2018 Sep; 17(5):308-318. PubMed ID: 29741584
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genetically transitional disease: conceptual understanding and applicability to rheumatic disease.
    Niewold TB; Aksentijevich I; Gorevic PD; Gibson G; Yao Q
    Nat Rev Rheumatol; 2024 May; 20(5):301-310. PubMed ID: 38418715
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Emerging applications of genome-editing technology to examine functionality of GWAS-associated variants for complex traits.
    Smith AJP; Deloukas P; Munroe PB
    Physiol Genomics; 2018 Jul; 50(7):510-522. PubMed ID: 29652634
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Autoimmune diseases - connecting risk alleles with molecular traits of the immune system.
    Gutierrez-Arcelus M; Rich SS; Raychaudhuri S
    Nat Rev Genet; 2016 Mar; 17(3):160-74. PubMed ID: 26907721
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular genetic studies of complex phenotypes.
    Marian AJ
    Transl Res; 2012 Feb; 159(2):64-79. PubMed ID: 22243791
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Using epigenetic mechanisms to understand the impact of common disease causing alleles.
    Leung A; Schones DE; Natarajan R
    Curr Opin Immunol; 2012 Oct; 24(5):558-63. PubMed ID: 22857822
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of novel risk loci, causal insights, and heritable risk for Parkinson's disease: a meta-analysis of genome-wide association studies.
    Nalls MA; Blauwendraat C; Vallerga CL; Heilbron K; Bandres-Ciga S; Chang D; Tan M; Kia DA; Noyce AJ; Xue A; Bras J; Young E; von Coelln R; Simón-Sánchez J; Schulte C; Sharma M; Krohn L; Pihlstrøm L; Siitonen A; Iwaki H; Leonard H; Faghri F; Gibbs JR; Hernandez DG; Scholz SW; Botia JA; Martinez M; Corvol JC; Lesage S; Jankovic J; Shulman LM; Sutherland M; Tienari P; Majamaa K; Toft M; Andreassen OA; Bangale T; Brice A; Yang J; Gan-Or Z; Gasser T; Heutink P; Shulman JM; Wood NW; Hinds DA; Hardy JA; Morris HR; Gratten J; Visscher PM; Graham RR; Singleton AB; ; ;
    Lancet Neurol; 2019 Dec; 18(12):1091-1102. PubMed ID: 31701892
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Establishing the role of rare coding variants in known Parkinson's disease risk loci.
    Jansen IE; Gibbs JR; Nalls MA; Price TR; Lubbe S; van Rooij J; Uitterlinden AG; Kraaij R; Williams NM; Brice A; Hardy J; Wood NW; Morris HR; Gasser T; Singleton AB; Heutink P; Sharma M;
    Neurobiol Aging; 2017 Nov; 59():220.e11-220.e18. PubMed ID: 28867149
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of deleterious and regulatory genomic variations in known asthma loci.
    Neville MDC; Choi J; Lieberman J; Duan QL
    Respir Res; 2018 Dec; 19(1):248. PubMed ID: 30541564
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genome-wide meta-analysis reveals shared new
    Acosta-Herrera M; Kerick M; González-Serna D; ; ; Wijmenga C; Franke A; Gregersen PK; Padyukov L; Worthington J; Vyse TJ; Alarcón-Riquelme ME; Mayes MD; Martin J
    Ann Rheum Dis; 2019 Mar; 78(3):311-319. PubMed ID: 30573655
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Laying a solid foundation for Manhattan--'setting the functional basis for the post-GWAS era'.
    Zhang X; Bailey SD; Lupien M
    Trends Genet; 2014 Apr; 30(4):140-9. PubMed ID: 24661571
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Decoding multiple sclerosis: an update on genomics and future directions.
    Oksenberg JR
    Expert Rev Neurother; 2013 Dec; 13(12 Suppl):11-9. PubMed ID: 24289837
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Contribution of PTPN22 to Rheumatic Disease.
    Mustelin T; Bottini N; Stanford SM
    Arthritis Rheumatol; 2019 Apr; 71(4):486-495. PubMed ID: 30507064
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Insights into rheumatic diseases from next-generation sequencing.
    Donlin LT; Park SH; Giannopoulou E; Ivovic A; Park-Min KH; Siegel RM; Ivashkiv LB
    Nat Rev Rheumatol; 2019 Jun; 15(6):327-339. PubMed ID: 31000790
    [TBL] [Abstract][Full Text] [Related]  

  • 20. What rheumatologists need to know about CRISPR/Cas9.
    Gibson GJ; Yang M
    Nat Rev Rheumatol; 2017 Apr; 13(4):205-216. PubMed ID: 28202911
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.