These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
190 related articles for article (PubMed ID: 34188433)
1. Rectified Gaussian Scale Mixtures and the Sparse Non-Negative Least Squares Problem. Nalci A; Fedorov I; Al-Shoukairi M; Liu TT; Rao BD IEEE Trans Signal Process; 2018 Jun; 66(12):3124-3139. PubMed ID: 34188433 [TBL] [Abstract][Full Text] [Related]
2. Sparse Bayesian learning for DOA estimation with mutual coupling. Dai J; Hu N; Xu W; Chang C Sensors (Basel); 2015 Oct; 15(10):26267-80. PubMed ID: 26501284 [TBL] [Abstract][Full Text] [Related]
3. An Efficient Sparse Bayesian Learning Algorithm Based on Gaussian-Scale Mixtures. Zhou W; Zhang HT; Wang J IEEE Trans Neural Netw Learn Syst; 2022 Jul; 33(7):3065-3078. PubMed ID: 33481719 [TBL] [Abstract][Full Text] [Related]
4. A unified framework for sparse non-negative least squares using multiplicative updates and the non-negative matrix factorization problem. Fedorov I; Nalci A; Giri R; Rao BD; Nguyen TQ; Garudadri H Signal Processing; 2018 May; 146():79-91. PubMed ID: 31235988 [TBL] [Abstract][Full Text] [Related]
5. AMP-B-SBL: An algorithm for clustered sparse signals using approximate message passing. Shekaramiz M; Moon TK; Gunther JH Ubiquitous Comput Electron Mob Commun Conf (UEMCON) IEEE Annu; 2016 Oct; 2016():. PubMed ID: 29177253 [TBL] [Abstract][Full Text] [Related]
7. Direction-of-Arrival Estimation via Sparse Bayesian Learning Exploiting Hierarchical Priors with Low Complexity. Li N; Zhang X; Lv F; Zong B Sensors (Basel); 2024 Apr; 24(7):. PubMed ID: 38610548 [TBL] [Abstract][Full Text] [Related]
8. Bayesian wavelet-based image deconvolution: a GEM algorithm exploiting a class of heavy-tailed priors. Bioucas-Dias JM IEEE Trans Image Process; 2006 Apr; 15(4):937-51. PubMed ID: 16579380 [TBL] [Abstract][Full Text] [Related]
9. Underdetermined Wideband DOA Estimation for Off-Grid Sources with Coprime Array Using Sparse Bayesian Learning. Qin Y; Liu Y; Liu J; Yu Z Sensors (Basel); 2018 Jan; 18(1):. PubMed ID: 29337922 [TBL] [Abstract][Full Text] [Related]
10. Learned-SBL-GAMP based hybrid precoders/combiners in millimeter wave massive MIMO systems. Ali K S; Khan AA; T P; Ur Rehman A; Ouahada K PLoS One; 2023; 18(9):e0289868. PubMed ID: 37682816 [TBL] [Abstract][Full Text] [Related]
11. Regularized EM algorithm for sparse parameter estimation in nonlinear dynamic systems with application to gene regulatory network inference. Jia B; Wang X EURASIP J Bioinform Syst Biol; 2014; 2014(1):5. PubMed ID: 24708632 [TBL] [Abstract][Full Text] [Related]
12. Block Sparse Variational Bayes Regression Using Matrix Variate Distributions With Application to SSVEP Detection. Sharma S; Chaudhury S; Jayadeva IEEE Trans Neural Netw Learn Syst; 2022 Jan; 33(1):351-365. PubMed ID: 33048770 [TBL] [Abstract][Full Text] [Related]
13. Sparsity estimation from compressive projections via sparse random matrices. Ravazzi C; Fosson S; Bianchi T; Magli E EURASIP J Adv Signal Process; 2018; 2018(1):56. PubMed ID: 30956656 [TBL] [Abstract][Full Text] [Related]
14. A Bayesian framework for image segmentation with spatially varying mixtures. Nikou C; Likas AC; Galatsanos NP IEEE Trans Image Process; 2010 Sep; 19(9):2278-89. PubMed ID: 20378472 [TBL] [Abstract][Full Text] [Related]
15. Improved iterative shrinkage-thresholding for sparse signal recovery via Laplace mixtures models. Ravazzi C; Magli E EURASIP J Adv Signal Process; 2018; 2018(1):46. PubMed ID: 30996728 [TBL] [Abstract][Full Text] [Related]
16. Two-Dimensional Pattern-Coupled Sparse Bayesian Learning via Generalized Approximate Message Passing. Jun Fang ; Lizao Zhang ; Hongbin Li IEEE Trans Image Process; 2016 Jun; 25(6):2920-2930. PubMed ID: 28113900 [TBL] [Abstract][Full Text] [Related]
17. Sparse Bayesian Learning-Based Kernel Poisson Regression. Jia Y; Kwong S; Wu W; Wang R; Gao W IEEE Trans Cybern; 2019 Jan; 49(1):56-68. PubMed ID: 29990073 [TBL] [Abstract][Full Text] [Related]
18. Bayesian pixel classification using spatially variant finite mixtures and the generalized EM algorithm. Sanjay-Gopal S; Hebert TJ IEEE Trans Image Process; 1998; 7(7):1014-28. PubMed ID: 18276317 [TBL] [Abstract][Full Text] [Related]
19. Fast and robust Block-Sparse Bayesian learning for EEG source imaging. Ojeda A; Kreutz-Delgado K; Mullen T Neuroimage; 2018 Jul; 174():449-462. PubMed ID: 29596978 [TBL] [Abstract][Full Text] [Related]
20. Sparse Aperture InISAR Imaging via Sequential Multiple Sparse Bayesian Learning. Zhang S; Liu Y; Li X Sensors (Basel); 2017 Oct; 17(10):. PubMed ID: 28994717 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]