These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 34188884)

  • 1. Automatic detection of fish and tracking of movement for ecology.
    Lopez-Marcano S; L Jinks E; Buelow CA; Brown CJ; Wang D; Kusy B; M Ditria E; Connolly RM
    Ecol Evol; 2021 Jun; 11(12):8254-8263. PubMed ID: 34188884
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-resolution, non-invasive animal tracking and reconstruction of local environment in aquatic ecosystems.
    Francisco FA; Nührenberg P; Jordan A
    Mov Ecol; 2020; 8():27. PubMed ID: 32582448
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multi-Object Tracking in Heterogeneous environments (MOTHe) for animal video recordings.
    Rathore A; Sharma A; Shah S; Sharma N; Torney C; Guttal V
    PeerJ; 2023; 11():e15573. PubMed ID: 37397020
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Climate change does not affect the seafood quality of a commonly targeted fish.
    Coleman MA; Butcherine P; Kelaher BP; Broadhurst MK; March DT; Provost EJ; David J; Benkendorff K
    Glob Chang Biol; 2019 Feb; 25(2):699-707. PubMed ID: 30414338
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Towards sustainable demersal fisheries: NepCon image acquisition system for automatic Nephrops norvegicus detection.
    Sokolova M; Thompson F; Mariani P; Krag LA
    PLoS One; 2021; 16(6):e0252824. PubMed ID: 34133448
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tracking individual honeybees among wildflower clusters with computer vision-facilitated pollinator monitoring.
    Ratnayake MN; Dyer AG; Dorin A
    PLoS One; 2021; 16(2):e0239504. PubMed ID: 33571210
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Deep learning for automated analysis of fish abundance: the benefits of training across multiple habitats.
    Ditria EM; Sievers M; Lopez-Marcano S; Jinks EL; Connolly RM
    Environ Monit Assess; 2020 Oct; 192(11):698. PubMed ID: 33044609
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparing State-of-the-Art Deep Learning Algorithms for the Automated Detection and Tracking of Black Cattle.
    Myat Noe S; Zin TT; Tin P; Kobayashi I
    Sensors (Basel); 2023 Jan; 23(1):. PubMed ID: 36617130
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tracking Objects Based on Multiple Particle Filters for Multipart Combined Moving Directions Information.
    Ha ND; Shimizu I; Bao PT
    Comput Intell Neurosci; 2020; 2020():8839725. PubMed ID: 33381159
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A new approach to assessing the space use behavior of macroinvertebrates by automated video tracking.
    Shokri M; Cozzoli F; Ciotti M; Gjoni V; Marrocco V; Vignes F; Basset A
    Ecol Evol; 2021 Apr; 11(7):3004-3014. PubMed ID: 33841762
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Coral Detection, Ranging, and Assessment (CDRA) algorithm-based automatic estimation of coral reef coverage.
    Jiang Y; Qu M; Chen Y
    Mar Environ Res; 2023 Oct; 191():106157. PubMed ID: 37690866
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Composited FishNet: Fish Detection and Species Recognition From Low-Quality Underwater Videos.
    Zhao Z; Liu Y; Sun X; Liu J; Yang X; Zhou C
    IEEE Trans Image Process; 2021; 30():4719-4734. PubMed ID: 33905330
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Automated assessment of hyoid movement during normal swallow using ultrasound.
    Ma JK; Wrench AA
    Int J Lang Commun Disord; 2022 May; 57(3):615-629. PubMed ID: 35285113
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Deep-Learning Based Pipeline for Estimating the Abundance and Size of Aquatic Organisms in an Unconstrained Underwater Environment from Continuously Captured Stereo Video.
    Böer G; Gröger JP; Badri-Höher S; Cisewski B; Renkewitz H; Mittermayer F; Strickmann T; Schramm H
    Sensors (Basel); 2023 Mar; 23(6):. PubMed ID: 36992022
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multiobject Tracking of Wildlife in Videos Using Few-Shot Learning.
    Feng J; Xiao X
    Animals (Basel); 2022 May; 12(9):. PubMed ID: 35565649
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metapopulation Tracking Juvenile Penguins Reveals an Ecosystem-wide Ecological Trap.
    Sherley RB; Ludynia K; Dyer BM; Lamont T; Makhado AB; Roux JP; Scales KL; Underhill LG; Votier SC
    Curr Biol; 2017 Feb; 27(4):563-568. PubMed ID: 28190725
    [TBL] [Abstract][Full Text] [Related]  

  • 17. New machine learning-based automatic high-throughput video tracking system for assessing water toxicity using Daphnia Magna locomotory responses.
    Kim J; Yuk H; Choi B; Yang M; Choi S; Lee KJ; Lee S; Heo TY
    Sci Rep; 2023 Mar; 13(1):3530. PubMed ID: 36864205
    [TBL] [Abstract][Full Text] [Related]  

  • 18. VTag: a semi-supervised pipeline for tracking pig activity with a single top-view camera.
    Chen CJ; Morota G; Lee K; Zhang Z; Cheng H
    J Anim Sci; 2022 Jun; 100(6):. PubMed ID: 35486674
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effectiveness of an automatic tracking software in underwater motion analysis.
    Magalhaes FA; Sawacha Z; Di Michele R; Cortesi M; Gatta G; Fantozzi S
    J Sports Sci Med; 2013; 12(4):660-7. PubMed ID: 24421725
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Detection and Tracking Meet Drones Challenge.
    Zhu P; Wen L; Du D; Bian X; Fan H; Hu Q; Ling H
    IEEE Trans Pattern Anal Mach Intell; 2022 Nov; 44(11):7380-7399. PubMed ID: 34648430
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.