BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 34189277)

  • 1. Curcumin pre-treatment may protect against mitochondrial damage in
    Abrahams S; Miller HC; Lombard C; van der Westhuizen FH; Bardien S
    Biochem Biophys Rep; 2021 Sep; 27():101035. PubMed ID: 34189277
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Curcumin Rescues a PINK1 Knock Down SH-SY5Y Cellular Model of Parkinson's Disease from Mitochondrial Dysfunction and Cell Death.
    van der Merwe C; van Dyk HC; Engelbrecht L; van der Westhuizen FH; Kinnear C; Loos B; Bardien S
    Mol Neurobiol; 2017 May; 54(4):2752-2762. PubMed ID: 27003823
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Availability of the key metabolic substrates dictates the respiratory response of cancer cells to the mitochondrial uncoupling.
    Zhdanov AV; Waters AH; Golubeva AV; Dmitriev RI; Papkovsky DB
    Biochim Biophys Acta; 2014 Jan; 1837(1):51-62. PubMed ID: 23891695
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Curcumin enhances paraquat-induced apoptosis of N27 mesencephalic cells via the generation of reactive oxygen species.
    Ortiz-Ortiz MA; Morán JM; Bravosanpedro JM; González-Polo RA; Niso-Santano M; Anantharam V; Kanthasamy AG; Soler G; Fuentes JM
    Neurotoxicology; 2009 Nov; 30(6):1008-18. PubMed ID: 19660496
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phytomodulatory proteins isolated from Calotropis procera latex promote glycemic control by improving hepatic mitochondrial function in HepG2 cells.
    Oliveira KA; Araújo HN; Lima TI; Oliveira AG; Favero-Santos BC; Guimarães DSPSF; Freitas PA; Neves RJD; Vasconcelos RP; Almeida MGG; Ramos MV; Silveira LR; Oliveira AC
    Saudi Pharm J; 2021 Sep; 29(9):1061-1069. PubMed ID: 34588851
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Curcumin Reduced H
    Zhang J; Li K; Wang X; Smith AM; Ning B; Liu Z; Liu C; Ross CA; Smith WW
    Front Aging Neurosci; 2021; 13():754956. PubMed ID: 34720999
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Neuroprotective effect of curcumin as evinced by abrogation of rotenone-induced motor deficits, oxidative and mitochondrial dysfunctions in mouse model of Parkinson's disease.
    Khatri DK; Juvekar AR
    Pharmacol Biochem Behav; 2016; 150-151():39-47. PubMed ID: 27619637
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Exhaustion of mitochondrial and autophagic reserve may contribute to the development of LRRK2
    Juárez-Flores DL; González-Casacuberta I; Ezquerra M; Bañó M; Carmona-Pontaque F; Catalán-García M; Guitart-Mampel M; Rivero JJ; Tobias E; Milisenda JC; Tolosa E; Marti MJ; Fernández-Santiago R; Cardellach F; Morén C; Garrabou G
    J Transl Med; 2018 Jun; 16(1):160. PubMed ID: 29884186
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Leucine-rich repeat kinase-2 (LRRK2) modulates paraquat-induced inflammatory sickness and stress phenotype.
    Rudyk C; Dwyer Z; Hayley S;
    J Neuroinflammation; 2019 Jun; 16(1):120. PubMed ID: 31174552
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ginseng protein protects against mitochondrial dysfunction and neurodegeneration by inducing mitochondrial unfolded protein response in Drosophila melanogaster PINK1 model of Parkinson's disease.
    Liu M; Yu S; Wang J; Qiao J; Liu Y; Wang S; Zhao Y
    J Ethnopharmacol; 2020 Jan; 247():112213. PubMed ID: 31562951
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fibroblast Biomarkers of Sporadic Parkinson's Disease and LRRK2 Kinase Inhibition.
    Smith GA; Jansson J; Rocha EM; Osborn T; Hallett PJ; Isacson O
    Mol Neurobiol; 2016 Oct; 53(8):5161-77. PubMed ID: 26399642
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Accumulation of mitochondrial 7S DNA in idiopathic and LRRK2 associated Parkinson's disease.
    Podlesniy P; Puigròs M; Serra N; Fernández-Santiago R; Ezquerra M; Tolosa E; Trullas R
    EBioMedicine; 2019 Oct; 48():554-567. PubMed ID: 31631040
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Curcumin exposure induces expression of the Parkinson's disease-associated leucine-rich repeat kinase 2 (LRRK2) in rat mesencephalic cells.
    Ortiz-Ortiz MA; Morán JM; Ruiz-Mesa LM; Niso-Santano M; Bravo-SanPedro JM; Gómez-Sánchez R; González-Polo RA; Fuentes JM
    Neurosci Lett; 2010 Jan; 468(2):120-4. PubMed ID: 19879924
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Enzymatic Core of the Parkinson's Disease-Associated Protein LRRK2 Impairs Mitochondrial Biogenesis in Aging Yeast.
    Aufschnaiter A; Kohler V; Walter C; Tosal-Castano S; Habernig L; Wolinski H; Keller W; Vögtle FN; Büttner S
    Front Mol Neurosci; 2018; 11():205. PubMed ID: 29977190
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mitochondrial Calcium Dysregulation Contributes to Dendrite Degeneration Mediated by PD/LBD-Associated LRRK2 Mutants.
    Verma M; Callio J; Otero PA; Sekler I; Wills ZP; Chu CT
    J Neurosci; 2017 Nov; 37(46):11151-11165. PubMed ID: 29038245
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Neuroprotective action of 4-Hydroxyisophthalic acid against paraquat-induced motor impairment involves amelioration of mitochondrial damage and neurodegeneration in Drosophila.
    S N; Shivanandappa T
    Neurotoxicology; 2018 May; 66():160-169. PubMed ID: 29653138
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Neuroprotective Effect of the LRRK2 Kinase Inhibitor PF-06447475 in Human Nerve-Like Differentiated Cells Exposed to Oxidative Stress Stimuli: Implications for Parkinson's Disease.
    Mendivil-Perez M; Velez-Pardo C; Jimenez-Del-Rio M
    Neurochem Res; 2016 Oct; 41(10):2675-2692. PubMed ID: 27394417
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Knockdown transgenic Lrrk Drosophila resists paraquat-induced locomotor impairment and neurodegeneration: A therapeutic strategy for Parkinson's disease.
    Quintero-Espinosa D; Jimenez-Del-Rio M; Velez-Pardo C
    Brain Res; 2017 Feb; 1657():253-261. PubMed ID: 28041945
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-throughput assessment of oxidative respiration in fish embryos: Advancing adverse outcome pathways for mitochondrial dysfunction.
    Souders CL; Liang X; Wang X; Ector N; Zhao YH; Martyniuk CJ
    Aquat Toxicol; 2018 Jun; 199():162-173. PubMed ID: 29631217
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Wild-type and mutant (G2019S) leucine-rich repeat kinase 2 (LRRK2) associate with subunits of the translocase of outer mitochondrial membrane (TOM) complex.
    Neethling A; Engelbrecht L; Loos B; Kinnear C; Theart R; Abrahams S; Niesler T; Mellick GD; Williams M; Bardien S
    Exp Cell Res; 2019 Feb; 375(2):72-79. PubMed ID: 30597143
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.