BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 34189476)

  • 21. Heritable CRISPR-Cas9 editing of plant genomes using RNA virus vectors.
    Uranga M; Aragonés V; Daròs JA; Pasin F
    STAR Protoc; 2023 Mar; 4(1):102091. PubMed ID: 36853698
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Protocol for the electroporation of CRISPR-Cas for DNA and RNA targeting in Bos taurus zygotes.
    Biase FH; Schettini G
    STAR Protoc; 2024 Mar; 5(1):102940. PubMed ID: 38460133
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Efficient CRISPR-Cas9-mediated genome editing for characterization of essential genes in
    Picchi-Constante GFA; Hiraiwa PM; Marek M; Rogerio VZ; Guerra-Slompo EP; Romier C; Zanchin NIT
    STAR Protoc; 2022 Jun; 3(2):101324. PubMed ID: 35496799
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Gene editing in mouse zygotes using the CRISPR/Cas9 system.
    Wefers B; Bashir S; Rossius J; Wurst W; Kühn R
    Methods; 2017 May; 121-122():55-67. PubMed ID: 28263886
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Design and Assembly of CRISPR/Cas9 Lentiviral and rAAV Vectors for Targeted Genome Editing.
    Sandoval IM; Collier TJ; Manfredsson FP
    Methods Mol Biol; 2019; 1937():29-45. PubMed ID: 30706388
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Production and Validation of Lentiviral Vectors for CRISPR/Cas9 Delivery.
    Ryø LB; Thomsen EA; Mikkelsen JG
    Methods Mol Biol; 2019; 1961():93-109. PubMed ID: 30912042
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Analysing the outcome of CRISPR-aided genome editing in embryos: Screening, genotyping and quality control.
    Mianné J; Codner GF; Caulder A; Fell R; Hutchison M; King R; Stewart ME; Wells S; Teboul L
    Methods; 2017 May; 121-122():68-76. PubMed ID: 28363792
    [TBL] [Abstract][Full Text] [Related]  

  • 28. One-step CRISPR-Cas9 protocol for the generation of plug & play conditional knockouts in
    Yu JJS; Vincent JP; McGough IJ
    STAR Protoc; 2021 Jun; 2(2):100560. PubMed ID: 34095868
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Direct Generation of Conditional Alleles Using CRISPR/Cas9 in Mouse Zygotes.
    Pritchard CEJ; Kroese LJ; Huijbers IJ
    Methods Mol Biol; 2017; 1642():21-35. PubMed ID: 28815491
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Generation of mouse models carrying B cell restricted single or multiplexed loss-of-function mutations through CRISPR-Cas9 gene editing.
    Ten Hacken E; Gruber M; Hernández-Sánchez M; Hoffmann GB; Baranowski K; Redd RA; Clement K; Livak K; Wu CJ
    STAR Protoc; 2023 Dec; 4(4):102165. PubMed ID: 37729058
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Generation of
    Pelletier S; Tummers B; Green DR
    STAR Protoc; 2020 Dec; 1(3):100181. PubMed ID: 33377075
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Guidelines for optimized gene knockout using CRISPR/Cas9.
    Campenhout CV; Cabochette P; Veillard AC; Laczik M; Zelisko-Schmidt A; Sabatel C; Dhainaut M; Vanhollebeke B; Gueydan C; Kruys V
    Biotechniques; 2019 Jun; 66(6):295-302. PubMed ID: 31039627
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A user-friendly and streamlined protocol for CRISPR/Cas9 genome editing in budding yeast.
    Novarina D; Koutsoumpa A; Milias-Argeitis A
    STAR Protoc; 2022 Jun; 3(2):101358. PubMed ID: 35712010
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Design and Evaluation of Guide RNA Transcripts with a 3'-Terminal HDV Ribozyme to Enhance CRISPR-Based Gene Inactivation.
    Berkhout B; Gao Z; Herrera-Carrillo E
    Methods Mol Biol; 2021; 2167():205-224. PubMed ID: 32712922
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Genome Editing of Mouse by Cytoplasmic Injection.
    Horii T; Hatada I
    Methods Mol Biol; 2017; 1630():55-66. PubMed ID: 28643249
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Versatile and precise gene-targeting strategies for functional studies in mammalian cell lines.
    Wassef M; Luscan A; Battistella A; Le Corre S; Li H; Wallace MR; Vidaud M; Margueron R
    Methods; 2017 May; 121-122():45-54. PubMed ID: 28499832
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Protocol for CRISPR-Cas9-mediated genome editing to study spermatogenesis in Caenorhabditis elegans.
    Wang P; Cao Z; Wang Q; Ma X; Wang N; Chen L; Zhao Y; Miao L
    STAR Protoc; 2023 Dec; 4(4):102720. PubMed ID: 37967017
    [TBL] [Abstract][Full Text] [Related]  

  • 38. One-step generation of complete gene knockout mice and monkeys by CRISPR/Cas9-mediated gene editing with multiple sgRNAs.
    Zuo E; Cai YJ; Li K; Wei Y; Wang BA; Sun Y; Liu Z; Liu J; Hu X; Wei W; Huo X; Shi L; Tang C; Liang D; Wang Y; Nie YH; Zhang CC; Yao X; Wang X; Zhou C; Ying W; Wang Q; Chen RC; Shen Q; Xu GL; Li J; Sun Q; Xiong ZQ; Yang H
    Cell Res; 2017 Jul; 27(7):933-945. PubMed ID: 28585534
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Pipeline for the generation of gene knockout mice using dual sgRNA CRISPR/Cas9-mediated gene editing.
    Ghassemi B; Shamsara M; Soleimani M; Kiani J; Rassoulzadegan M
    Anal Biochem; 2019 Mar; 568():31-40. PubMed ID: 30593779
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Comparative analysis of single-stranded DNA donors to generate conditional null mouse alleles.
    Lanza DG; Gaspero A; Lorenzo I; Liao L; Zheng P; Wang Y; Deng Y; Cheng C; Zhang C; Seavitt JR; DeMayo FJ; Xu J; Dickinson ME; Beaudet AL; Heaney JD
    BMC Biol; 2018 Jun; 16(1):69. PubMed ID: 29925370
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.