These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
177 related articles for article (PubMed ID: 34189949)
1. Exercising muscle mass influences neuromuscular, cardiorespiratory, and perceptual responses during and following ramp-incremental cycling to task failure. Zhang J; Iannetta D; Alzeeby M; MacInnis MJ; Aboodarda SJ Am J Physiol Regul Integr Comp Physiol; 2021 Aug; 321(2):R238-R249. PubMed ID: 34189949 [TBL] [Abstract][Full Text] [Related]
2. Performance and perceived fatigability across the intensity spectrum: role of muscle mass during cycling. Zhang J; Murias JM; MacInnis MJ; Aboodarda SJ; Iannetta D Am J Physiol Regul Integr Comp Physiol; 2024 Jun; 326(6):R472-R483. PubMed ID: 38557152 [TBL] [Abstract][Full Text] [Related]
3. Power reserve following ramp-incremental cycling to exhaustion: implications for muscle fatigue and function. Hodgson MD; Keir DA; Copithorne DB; Rice CL; Kowalchuk JM J Appl Physiol (1985); 2018 Aug; 125(2):304-312. PubMed ID: 29698107 [TBL] [Abstract][Full Text] [Related]
4. Cardiorespiratory demand of acute voluntary cycling with functional electrical stimulation in individuals with multiple sclerosis with severe mobility impairment. Edwards T; Motl RW; Pilutti LA Appl Physiol Nutr Metab; 2018 Jan; 43(1):71-76. PubMed ID: 28881147 [TBL] [Abstract][Full Text] [Related]
5. No reserve in isokinetic cycling power at intolerance during ramp incremental exercise in endurance-trained men. Ferguson C; Wylde LA; Benson AP; Cannon DT; Rossiter HB J Appl Physiol (1985); 2016 Jan; 120(1):70-7. PubMed ID: 26565019 [TBL] [Abstract][Full Text] [Related]
6. Neuromuscular and perceptual mechanisms of fatigue accompanying task failure in response to moderate-, heavy-, severe-, and extreme-intensity cycling. Iannetta D; Zhang J; Murias JM; Aboodarda SJ J Appl Physiol (1985); 2022 Aug; 133(2):323-334. PubMed ID: 35771217 [TBL] [Abstract][Full Text] [Related]
7. Different ramp-incremental slopes elicit similar V̇o Azevedo RA; Fleitas-Paniagua PR; Trpcic M; Iannetta D; Millet GY; Murias JM J Appl Physiol (1985); 2023 Jul; 135(1):109-120. PubMed ID: 37227186 [TBL] [Abstract][Full Text] [Related]
8. Neuromuscular fatigue following constant versus variable-intensity endurance cycling in triathletes. Lepers R; Theurel J; Hausswirth C; Bernard T J Sci Med Sport; 2008 Jul; 11(4):381-9. PubMed ID: 17499023 [TBL] [Abstract][Full Text] [Related]
9. Effects of pre-induced fatigue vs. concurrent pain on exercise tolerance, neuromuscular performance and corticospinal responses of locomotor muscles. Aboodarda SJ; Iannetta D; Emami N; Varesco G; Murias JM; Millet GY J Physiol; 2020 Jan; 598(2):285-302. PubMed ID: 31826296 [TBL] [Abstract][Full Text] [Related]
10. The magnitude of neuromuscular fatigue is not intensity dependent when cycling above critical power but relates to aerobic and anaerobic capacities. Schäfer LU; Hayes M; Dekerle J Exp Physiol; 2019 Feb; 104(2):209-219. PubMed ID: 30468691 [TBL] [Abstract][Full Text] [Related]
12. Prior Involvement of Central Motor Drive Does Not Impact Performance and Neuromuscular Fatigue in a Subsequent Endurance Task. Laginestra FG; Cavicchia A; Vanegas-Lopez JE; Barbi C; Martignon C; Giuriato G; Pedrinolla A; Amann M; Hureau TJ; Venturelli M Med Sci Sports Exerc; 2022 Oct; 54(10):1751-1760. PubMed ID: 35612382 [TBL] [Abstract][Full Text] [Related]
13. Creatine supplementation improves performance above critical power but does not influence the magnitude of neuromuscular fatigue at task failure. Schäfer LU; Hayes M; Dekerle J Exp Physiol; 2019 Dec; 104(12):1881-1891. PubMed ID: 31512330 [TBL] [Abstract][Full Text] [Related]
14. Maximal power output during incremental cycling test is dependent on the curvature constant of the power-time relationship. Souza KM; de Lucas RD; do Nascimento Salvador PC; Guglielmo LG; Caritá RA; Greco CC; Denadai BS Appl Physiol Nutr Metab; 2015 Sep; 40(9):895-8. PubMed ID: 26288395 [TBL] [Abstract][Full Text] [Related]
15. Intermittent blood flow occlusion modulates neuromuscular, perceptual, and cardiorespiratory determinants of exercise tolerance during cycling. McClean ZJ; Zhang J; Khaledi N; Yacoub M; Aboodarda SJ Eur J Appl Physiol; 2023 Oct; 123(10):2295-2306. PubMed ID: 37278835 [TBL] [Abstract][Full Text] [Related]
16. Combining heat stress and moderate hypoxia reduces cycling time to exhaustion without modifying neuromuscular fatigue characteristics. Girard O; Racinais S Eur J Appl Physiol; 2014; 114(7):1521-32. PubMed ID: 24748530 [TBL] [Abstract][Full Text] [Related]
17. Fatigue is specific to working muscles: no cross-over with single-leg cycling in trained cyclists. Elmer SJ; Amann M; McDaniel J; Martin DT; Martin JC Eur J Appl Physiol; 2013 Feb; 113(2):479-88. PubMed ID: 22806085 [TBL] [Abstract][Full Text] [Related]
18. Oxygen availability affects exercise capacity, but not neuromuscular fatigue characteristics of knee extensors, during exhaustive intermittent cycling. Girard O; Buchheit M; Goodall S; Racinais S Eur J Appl Physiol; 2021 Jan; 121(1):95-107. PubMed ID: 32995960 [TBL] [Abstract][Full Text] [Related]
19. Alterations in neuromuscular function and perceptual responses following acute eccentric cycling exercise. Elmer SJ; McDaniel J; Martin JC Eur J Appl Physiol; 2010 Dec; 110(6):1225-33. PubMed ID: 20737166 [TBL] [Abstract][Full Text] [Related]
20. An Innovative Ergometer to Measure Neuromuscular Fatigue Immediately after Cycling. Doyle-Baker D; Temesi J; Medysky ME; Holash RJ; Millet GY Med Sci Sports Exerc; 2018 Feb; 50(2):375-387. PubMed ID: 28930862 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]