BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 34190373)

  • 1. Lactate metabolism in strictly anaerobic microorganisms with a soluble NAD
    Rosenbaum FP; Poehlein A; Egelkamp R; Daniel R; Harder S; Schlüter H; Schoelmerich MC
    Environ Microbiol; 2021 Aug; 23(8):4661-4672. PubMed ID: 34190373
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A novel mode of lactate metabolism in strictly anaerobic bacteria.
    Weghoff MC; Bertsch J; Müller V
    Environ Microbiol; 2015 Mar; 17(3):670-7. PubMed ID: 24762045
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tyrosine phosphorylation of lactate dehydrogenase A is important for NADH/NAD(+) redox homeostasis in cancer cells.
    Fan J; Hitosugi T; Chung TW; Xie J; Ge Q; Gu TL; Polakiewicz RD; Chen GZ; Boggon TJ; Lonial S; Khuri FR; Kang S; Chen J
    Mol Cell Biol; 2011 Dec; 31(24):4938-50. PubMed ID: 21969607
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Rnf Complex Is an Energy-Coupled Transhydrogenase Essential To Reversibly Link Cellular NADH and Ferredoxin Pools in the Acetogen Acetobacterium woodii.
    Westphal L; Wiechmann A; Baker J; Minton NP; Müller V
    J Bacteriol; 2018 Nov; 200(21):. PubMed ID: 30126940
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lactate dehydrogenase and glycerol-3-phosphate dehydrogenase cooperatively regulate growth and carbohydrate metabolism during
    Li H; Rai M; Buddika K; Sterrett MC; Luhur A; Mahmoudzadeh NH; Julick CR; Pletcher RC; Chawla G; Gosney CJ; Burton AK; Karty JA; Montooth KL; Sokol NS; Tennessen JM
    Development; 2019 Sep; 146(17):. PubMed ID: 31399469
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structure-based electron-confurcation mechanism of the Ldh-EtfAB complex.
    Kayastha K; Katsyv A; Himmrich C; Welsch S; Schuller JM; Ermler U; Müller V
    Elife; 2022 Jun; 11():. PubMed ID: 35748623
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Key Enzymes for Anaerobic Lactate Metabolism in Geobacter sulfurreducens.
    Ueki T
    Appl Environ Microbiol; 2021 Jan; 87(2):. PubMed ID: 33158892
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The redox switch/redox coupling hypothesis.
    Cerdán S; Rodrigues TB; Sierra A; Benito M; Fonseca LL; Fonseca CP; García-Martín ML
    Neurochem Int; 2006; 48(6-7):523-30. PubMed ID: 16530294
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multiple lactate dehydrogenase activities of the rumen bacterium Selenomonas ruminantium.
    Gilmour M; Flint HJ; Mitchell WJ
    Microbiology (Reading); 1994 Aug; 140 ( Pt 8)():2077-84. PubMed ID: 7921257
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Presence of bound substrate in lactate dehydrogenase from carp liver.
    Banerjee N; Bhattacharyya D
    Indian J Biochem Biophys; 2012 Jun; 49(3):182-8. PubMed ID: 22803333
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biophysical and Biochemical Characterization of TP0037, a d-Lactate Dehydrogenase, Supports an Acetogenic Energy Conservation Pathway in Treponema pallidum.
    Deka RK; Liu WZ; Norgard MV; Brautigam CA
    mBio; 2020 Sep; 11(5):. PubMed ID: 32963009
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reduced Warburg effect in cancer cells undergoing autophagy: steady- state 1H-MRS and real-time hyperpolarized 13C-MRS studies.
    Lin G; Andrejeva G; Wong Te Fong AC; Hill DK; Orton MR; Parkes HG; Koh DM; Robinson SP; Leach MO; Eykyn TR; Chung YL
    PLoS One; 2014; 9(3):e92645. PubMed ID: 24667972
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genomic Analysis of Calderihabitans maritimus KKC1, a Thermophilic, Hydrogenogenic, Carboxydotrophic Bacterium Isolated from Marine Sediment.
    Omae K; Yoneda Y; Fukuyama Y; Yoshida T; Sako Y
    Appl Environ Microbiol; 2017 Aug; 83(15):. PubMed ID: 28526793
    [No Abstract]   [Full Text] [Related]  

  • 14. Roles of d-Lactate Dehydrogenases in the Anaerobic Growth of
    Kasai T; Suzuki Y; Kouzuma A; Watanabe K
    Appl Environ Microbiol; 2019 Feb; 85(3):. PubMed ID: 30504209
    [No Abstract]   [Full Text] [Related]  

  • 15. Multiple forms of lactate dehydrogenase in Staphylococcus aureus.
    Stockland AE; San Clemente CL
    J Bacteriol; 1969 Oct; 100(1):347-53. PubMed ID: 4310081
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Loss of NADH Oxidase Activity in Streptococcus mutans Leads to Rex-Mediated Overcompensation in NAD+ Regeneration by Lactate Dehydrogenase.
    Baker JL; Derr AM; Faustoferri RC; Quivey RG
    J Bacteriol; 2015 Dec; 197(23):3645-57. PubMed ID: 26350138
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Label-free high-throughput assays to screen and characterize novel lactate dehydrogenase inhibitors.
    Vanderporten E; Frick L; Turincio R; Thana P; Lamarr W; Liu Y
    Anal Biochem; 2013 Oct; 441(2):115-22. PubMed ID: 23871998
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of carboxylic acids on the stereospecific nicotinamide adenine dinucleotide-dependent and nicotinamide adenine dinucleotide-independent lactate dehydrogenases of Leuconostoc mesenteroides.
    Doelle HW
    J Bacteriol; 1971 Dec; 108(3):1290-5. PubMed ID: 4333321
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kinetic formulations for the oxidation and the reduction of glyoxylate by lactate dehydrogenase.
    Lluis C; Bozal J
    Biochim Biophys Acta; 1977 Feb; 480(2):333-42. PubMed ID: 13838
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Isolation and expression of lactate dehydrogenase genes from Rhizopus oryzae.
    Skory CD
    Appl Environ Microbiol; 2000 Jun; 66(6):2343-8. PubMed ID: 10831409
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.