BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 34190373)

  • 21. Kinetic characterisation of recombinant Corynebacterium glutamicum NAD+-dependent LDH over-expressed in E. coli and its rescue of an lldD- phenotype in C. glutamicum: the issue of reversibility re-examined.
    Sharkey MA; Maher MA; Guyonvarch A; Engel PC
    Arch Microbiol; 2011 Oct; 193(10):731-40. PubMed ID: 21567176
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A Bacterial Multidomain NAD-Independent d-Lactate Dehydrogenase Utilizes Flavin Adenine Dinucleotide and Fe-S Clusters as Cofactors and Quinone as an Electron Acceptor for d-Lactate Oxidization.
    Jiang T; Guo X; Yan J; Zhang Y; Wang Y; Zhang M; Sheng B; Ma C; Xu P; Gao C
    J Bacteriol; 2017 Nov; 199(22):. PubMed ID: 28847921
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Some kinetic properties of lactate dehydrogenase activity in cell extracts from a mammalian (ovine) corneal epithelium.
    Doughty MJ
    Exp Eye Res; 1998 Feb; 66(2):231-9. PubMed ID: 9533849
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Involvement of pyruvate dehydrogenase in product formation in pyruvate-limited anaerobic chemostat cultures of Enterococcus faecalis NCTC 775.
    Snoep JL; Teixeira de Mattos MJ; Postma PW; Neijssel OM
    Arch Microbiol; 1990; 154(1):50-5. PubMed ID: 2118752
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Fermentative metabolism of Bacillus subtilis: physiology and regulation of gene expression.
    Cruz Ramos H; Hoffmann T; Marino M; Nedjari H; Presecan-Siedel E; Dreesen O; Glaser P; Jahn D
    J Bacteriol; 2000 Jun; 182(11):3072-80. PubMed ID: 10809684
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Covalent binding of 4-hydroxy-2-nonenal to lactate dehydrogenase decreases NADH formation and metmyoglobin reducing activity.
    Ramanathan R; Mancini RA; Suman SP; Beach CM
    J Agric Food Chem; 2014 Mar; 62(9):2112-7. PubMed ID: 24552270
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Variations in the activity of some metabolic enzymes during development of Artemia parthenogenetica (Crustacea: Anostraca).
    Hemamalini AK; Munuswamy N
    Arch Int Physiol Biochim Biophys; 1994; 102(2):107-10. PubMed ID: 7519455
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effect of lactate dehydrogenase activity and isoenzyme localization in bovine oocytes and utilization of oxidative substrates on in vitro maturation.
    Cetica PD; Pintos LN; Dalvit GC; Beconi MT
    Theriogenology; 1999 Feb; 51(3):541-50. PubMed ID: 10729040
    [TBL] [Abstract][Full Text] [Related]  

  • 29. LACTATE-DEGRADING SYSTEM IN BUTYRIBACTERIUM RETTGERI SUBJECT TO GLUCOSE REPRESSION.
    WITTENBERGER CL; HAAF AS
    J Bacteriol; 1964 Oct; 88(4):896-903. PubMed ID: 14219052
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Galloflavin suppresses lactate dehydrogenase activity and causes MYC downregulation in Burkitt lymphoma cells through NAD/NADH-dependent inhibition of sirtuin-1.
    Vettraino M; Manerba M; Govoni M; Di Stefano G
    Anticancer Drugs; 2013 Sep; 24(8):862-70. PubMed ID: 23797802
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Suppression of lactate production by aerobic fed-batch cultures of Lactococcus lactis.
    Sano A; Takatera M; Kawai M; Ichinose R; Yamasaki-Yashiki S; Katakura Y
    J Biosci Bioeng; 2020 Oct; 130(4):402-408. PubMed ID: 32669208
    [TBL] [Abstract][Full Text] [Related]  

  • 32. NAD(H) enhances the Cu(II)-mediated inactivation of lactate dehydrogenase by increasing the accessibility of sulfhydryl groups.
    Pamp K; Bramey T; Kirsch M; De Groot H; Petrat F
    Free Radic Res; 2005 Jan; 39(1):31-40. PubMed ID: 15875809
    [TBL] [Abstract][Full Text] [Related]  

  • 33. d-Lactate Dehydrogenase Links Methylglyoxal Degradation and Electron Transport through Cytochrome c.
    Welchen E; Schmitz J; Fuchs P; García L; Wagner S; Wienstroer J; Schertl P; Braun HP; Schwarzländer M; Gonzalez DH; Maurino VG
    Plant Physiol; 2016 Oct; 172(2):901-912. PubMed ID: 27506242
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Kinetic characterization of recombinant Bacillus coagulans FDP-activated l-lactate dehydrogenase expressed in Escherichia coli and its substrate specificity.
    Jiang T; Xu Y; Sun X; Zheng Z; Ouyang J
    Protein Expr Purif; 2014 Mar; 95():219-25. PubMed ID: 24412354
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Glucose and lactate metabolism by Actinomyces naeslundii.
    Takahashi N; Yamada T
    Crit Rev Oral Biol Med; 1999; 10(4):487-503. PubMed ID: 10634585
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Cloning and characterization of a L-lactate dehydrogenase gene from Ruminococcaceae bacterium CPB6.
    Yang Q; Wei C; Guo S; Liu J; Tao Y
    World J Microbiol Biotechnol; 2020 Nov; 36(12):182. PubMed ID: 33170386
    [TBL] [Abstract][Full Text] [Related]  

  • 37. L-lactate dehydrogenase A4- and A3B isoforms are bona fide peroxisomal enzymes in rat liver. Evidence for involvement in intraperoxisomal NADH reoxidation.
    Baumgart E; Fahimi HD; Stich A; Völkl A
    J Biol Chem; 1996 Feb; 271(7):3846-55. PubMed ID: 8632003
    [TBL] [Abstract][Full Text] [Related]  

  • 38. NAD-independent L-lactate dehydrogenase is required for L-lactate utilization in Pseudomonas stutzeri SDM.
    Gao C; Jiang T; Dou P; Ma C; Li L; Kong J; Xu P
    PLoS One; 2012; 7(5):e36519. PubMed ID: 22574176
    [TBL] [Abstract][Full Text] [Related]  

  • 39. An integrated NAD+-dependent enzyme-functionalized field-effect transistor (ENFET) system: development of a lactate biosensor.
    Zayats M; Kharitonov AB; Katz E; Bückmann AF; Willner I
    Biosens Bioelectron; 2000; 15(11-12):671-80. PubMed ID: 11213228
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Lactate regulates pyruvate uptake and metabolism in the preimplantation mouse embryo.
    Lane M; Gardner DK
    Biol Reprod; 2000 Jan; 62(1):16-22. PubMed ID: 10611062
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.