These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 34190382)

  • 21. Unique processes yielding pure azaphilones in Talaromyces atroroseus.
    Tolborg G; Ødum ASR; Isbrandt T; Larsen TO; Workman M
    Appl Microbiol Biotechnol; 2020 Jan; 104(2):603-613. PubMed ID: 31637495
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Monascus pigments.
    Feng Y; Shao Y; Chen F
    Appl Microbiol Biotechnol; 2012 Dec; 96(6):1421-40. PubMed ID: 23104643
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Characterization of an hyperpigmenting mutant of Monascus purpureus IB1: identification of two novel pigment chemical structures.
    Campoy S; Rumbero A; Martín JF; Liras P
    Appl Microbiol Biotechnol; 2006 Apr; 70(4):488-96. PubMed ID: 16151799
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Enhancement of Monascus yellow pigments production by activating the cAMP signalling pathway in Monascus purpureus HJ11.
    Liu J; Du Y; Ma H; Pei X; Li M
    Microb Cell Fact; 2020 Dec; 19(1):224. PubMed ID: 33287814
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Systematic Metabolic Engineering for the Production of Azaphilones in
    Duan Y; Du Y; Yi Z; Wang Z; Pei X; Wei X; Li M
    J Agric Food Chem; 2022 Feb; 70(5):1589-1600. PubMed ID: 35085438
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Dynamic regulation of Monascus azaphilones biosynthesis by the binary MrPigE-MrPigF oxidoreductase system.
    Duan Y; Ma H; Wei X; Li M
    Appl Microbiol Biotechnol; 2022 Nov; 106(22):7519-7530. PubMed ID: 36221033
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Synthesis of azaphilone-based chemical libraries.
    Achard M; Beeler AB; Porco JA
    ACS Comb Sci; 2012 Mar; 14(3):236-44. PubMed ID: 22330196
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Orange, red, yellow: biosynthesis of azaphilone pigments in
    Chen W; Chen R; Liu Q; He Y; He K; Ding X; Kang L; Guo X; Xie N; Zhou Y; Lu Y; Cox RJ; Molnár I; Li M; Shao Y; Chen F
    Chem Sci; 2017 Jul; 8(7):4917-4925. PubMed ID: 28959415
    [No Abstract]   [Full Text] [Related]  

  • 29. Stereodivergent, Chemoenzymatic Synthesis of Azaphilone Natural Products.
    Pyser JB; Baker Dockrey SA; Benítez AR; Joyce LA; Wiscons RA; Smith JL; Narayan ARH
    J Am Chem Soc; 2019 Nov; 141(46):18551-18559. PubMed ID: 31692339
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Monasone Naphthoquinone Biosynthesis and Resistance in
    Li M; Kang L; Ding X; Liu J; Liu Q; Shao Y; Molnár I; Chen F
    mBio; 2020 Feb; 11(1):. PubMed ID: 32019788
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Thielavialides A-E, nor-spiro-azaphilones, and a bis-spiro-azaphilone from Thielavia sp. PA0001, an endophytic fungus isolated from aeroponically grown Physalis alkekengi.
    Wijeratne EM; Espinosa-Artiles P; Gruener R; Gunatilaka AA
    J Nat Prod; 2014 Jun; 77(6):1467-72. PubMed ID: 24882589
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Atrorosins: a new subgroup of Monascus pigments from Talaromyces atroroseus.
    Isbrandt T; Tolborg G; Ødum A; Workman M; Larsen TO
    Appl Microbiol Biotechnol; 2020 Jan; 104(2):615-622. PubMed ID: 31802169
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Secondary metabolites from the fermented rice of the fungus
    Wu HC; Cheng MJ; Wu MD; Chen JJ; Chen YL; Chang HS; Chen KP
    Nat Prod Res; 2019 Dec; 33(24):3541-3550. PubMed ID: 30518252
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Delineating citrinin biosynthesis: Ctn-ORF3 dioxygenase-mediated multi-step methyl oxidation precedes a reduction-mediated pyran ring cyclization.
    Balakrishnan B; Chandran R; Park SH; Kwon HJ
    Bioorg Med Chem Lett; 2016 Jan; 26(2):392-396. PubMed ID: 26707397
    [TBL] [Abstract][Full Text] [Related]  

  • 35. PP-O and PP-V, Monascus pigment homologues, production, and phylogenetic analysis in Penicillium purpurogenum.
    Arai T; Kojima R; Motegi Y; Kato J; Kasumi T; Ogihara J
    Fungal Biol; 2015 Dec; 119(12):1226-1236. PubMed ID: 26615745
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Collaborative Biosynthesis of a Class of Bioactive Azaphilones by Two Separate Gene Clusters Containing Four PKS/NRPSs with Transcriptional Crosstalk in Fungi.
    Huang X; Zhang W; Tang S; Wei S; Lu X
    Angew Chem Int Ed Engl; 2020 Mar; 59(11):4349-4353. PubMed ID: 31908094
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Biosynthesis of azaphilones: a review.
    Pavesi C; Flon V; Mann S; Leleu S; Prado S; Franck X
    Nat Prod Rep; 2021 Jun; 38(6):1058-1071. PubMed ID: 33527918
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Fungal polyketide azaphilone pigments as future natural food colorants?
    Mapari SA; Thrane U; Meyer AS
    Trends Biotechnol; 2010 Jun; 28(6):300-7. PubMed ID: 20452692
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Monaphilones A-C, three new antiproliferative azaphilone derivatives from Monascus purpureus NTU 568.
    Hsu YW; Hsu LC; Liang YH; Kuo YH; Pan TM
    J Agric Food Chem; 2010 Jul; 58(14):8211-6. PubMed ID: 20597545
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Inactivation of MrSir2 in Monascus ruber Influenced the Developmental Process and the Production of Monascus Azaphilone Pigments.
    Zhang J; Yang Y; Mao Z; Yan Q; Chen Q; Yi M; Shao Y
    Appl Biochem Biotechnol; 2022 Dec; 194(12):5702-5716. PubMed ID: 35802237
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.