These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
214 related articles for article (PubMed ID: 34190383)
41. Comparative analysis of the Photorhabdus luminescens and the Yersinia enterocolitica genomes: uncovering candidate genes involved in insect pathogenicity. Heermann R; Fuchs TM BMC Genomics; 2008 Jan; 9():40. PubMed ID: 18221513 [TBL] [Abstract][Full Text] [Related]
42. Genotypic and phenotypic diversity in populations of plant-probiotic Pseudomonas spp. colonizing roots. Picard C; Bosco M Naturwissenschaften; 2008 Jan; 95(1):1-16. PubMed ID: 17646952 [TBL] [Abstract][Full Text] [Related]
43. Type III secretion system and virulence markers highlight similarities and differences between human- and plant-associated pseudomonads related to Pseudomonas fluorescens and P. putida. Mazurier S; Merieau A; Bergeau D; Decoin V; Sperandio D; Crépin A; Barbey C; Jeannot K; Vicré-Gibouin M; Plésiat P; Lemanceau P; Latour X Appl Environ Microbiol; 2015 Apr; 81(7):2579-90. PubMed ID: 25636837 [TBL] [Abstract][Full Text] [Related]
44. Role of 2-hexyl, 5-propyl resorcinol production by Pseudomonas chlororaphis PCL1606 in the multitrophic interactions in the avocado rhizosphere during the biocontrol process. Calderón CE; de Vicente A; Cazorla FM FEMS Microbiol Ecol; 2014 Jul; 89(1):20-31. PubMed ID: 24641321 [TBL] [Abstract][Full Text] [Related]
45. Insecticidal and growth inhibitory activity of gut microbes isolated from adults of Spodoptera litura (Fab.). Devi S; Saini HS; Kaur S BMC Microbiol; 2022 Mar; 22(1):71. PubMed ID: 35272633 [TBL] [Abstract][Full Text] [Related]
46. Metabolic and Genomic Traits of Phytobeneficial Phenazine-Producing Zboralski A; Biessy A; Savoie MC; Novinscak A; Filion M Appl Environ Microbiol; 2020 Feb; 86(4):. PubMed ID: 31811040 [TBL] [Abstract][Full Text] [Related]
47. Fluorescent pseudomonads harboring type III secretion genes are enriched in the mycorrhizosphere of Medicago truncatula. Viollet A; Corberand T; Mougel C; Robin A; Lemanceau P; Mazurier S FEMS Microbiol Ecol; 2011 Mar; 75(3):457-67. PubMed ID: 21204867 [TBL] [Abstract][Full Text] [Related]
48. Nuclear rDNA phylogeny in the fungal genus Verticillium and its relationship to insect and plant virulence, extracellular proteases and carbohydrases. Bidochka MJ; Leger RJS; Stuart A; Gowanlock K Microbiology (Reading); 1999 Apr; 145 ( Pt 4)():955-963. PubMed ID: 10220175 [TBL] [Abstract][Full Text] [Related]
49. Bacteria from Ips sexdentatus (Coleoptera: Curculionidae) and their biocontrol potential. Sevim A; Gökçe C; Erbaş Z; Ozkan F J Basic Microbiol; 2012 Dec; 52(6):695-704. PubMed ID: 22581609 [TBL] [Abstract][Full Text] [Related]
50. Oral Toxicity of Ruiu L; Mura ME Toxins (Basel); 2021 Nov; 13(11):. PubMed ID: 34822556 [TBL] [Abstract][Full Text] [Related]
51. The puzzle of highly virulent Metarhizium anisopliae strains from Annona squamosa fields against Helicoverpa armigera. Pathan EK; Deshpande MV J Basic Microbiol; 2019 Apr; 59(4):392-401. PubMed ID: 30775784 [TBL] [Abstract][Full Text] [Related]
52. Characterization of CMR5c and CMR12a, novel fluorescent Pseudomonas strains from the cocoyam rhizosphere with biocontrol activity. Perneel M; Heyrman J; Adiobo A; De Maeyer K; Raaijmakers JM; De Vos P; Höfte M J Appl Microbiol; 2007 Oct; 103(4):1007-20. PubMed ID: 17897205 [TBL] [Abstract][Full Text] [Related]
53. Secondary Metabolites Production and Plant Growth Promotion by Shahid I; Rizwan M; Baig DN; Saleem RS; Malik KA; Mehnaz S J Microbiol Biotechnol; 2017 Mar; 27(3):480-491. PubMed ID: 27974729 [TBL] [Abstract][Full Text] [Related]
54. Acyl-homoserine lactone production is more common among plant-associated Pseudomonas spp. than among soilborne Pseudomonas spp. Elasri M; Delorme S; Lemanceau P; Stewart G; Laue B; Glickmann E; Oger PM; Dessaux Y Appl Environ Microbiol; 2001 Mar; 67(3):1198-209. PubMed ID: 11229911 [TBL] [Abstract][Full Text] [Related]
55. Chitinase from Pseudomonas fluorescens and its insecticidal activity against Helopeltis theivora. Suganthi M; Senthilkumar P; Arvinth S; Chandrashekara KN J Gen Appl Microbiol; 2017 Sep; 63(4):222-227. PubMed ID: 28680004 [TBL] [Abstract][Full Text] [Related]
56. Biosynthesis, Chemical Structure, and Structure-Activity Relationship of Orfamide Lipopeptides Produced by Pseudomonas protegens and Related Species. Ma Z; Geudens N; Kieu NP; Sinnaeve D; Ongena M; Martins JC; Höfte M Front Microbiol; 2016; 7():382. PubMed ID: 27065956 [TBL] [Abstract][Full Text] [Related]
57. Diversity of Pseudomonas Genomes, Including Populus-Associated Isolates, as Revealed by Comparative Genome Analysis. Jun SR; Wassenaar TM; Nookaew I; Hauser L; Wanchai V; Land M; Timm CM; Lu TY; Schadt CW; Doktycz MJ; Pelletier DA; Ussery DW Appl Environ Microbiol; 2016 Jan; 82(1):375-83. PubMed ID: 26519390 [TBL] [Abstract][Full Text] [Related]
58. Prediction of insecticidal activity of Bacillus thuringiensis strains by polymerase chain reaction product profiles. Carozzi NB; Kramer VC; Warren GW; Evola S; Koziel MG Appl Environ Microbiol; 1991 Nov; 57(11):3057-61. PubMed ID: 1781673 [TBL] [Abstract][Full Text] [Related]
59. Proteases as insecticidal agents. Harrison RL; Bonning BC Toxins (Basel); 2010 May; 2(5):935-53. PubMed ID: 22069618 [TBL] [Abstract][Full Text] [Related]
60. Fighting the global pest problem: preface to the special Toxicon issue on insecticidal toxins and their potential for insect pest control. Nicholson GM Toxicon; 2007 Mar; 49(4):413-22. PubMed ID: 17223148 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]