These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 34190525)

  • 1. Shear-Induced Interfacial Structural Conversion Triggers Macroscale Superlubricity: From Black Phosphorus Nanoflakes to Phosphorus Oxide.
    Liu Y; Li J; Li J; Yi S; Ge X; Zhang X; Luo J
    ACS Appl Mater Interfaces; 2021 Jul; 13(27):31947-31956. PubMed ID: 34190525
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Macroscale Superlubricity Achieved on the Hydrophobic Graphene Coating with Glycerol.
    Liu Y; Li J; Ge X; Yi S; Wang H; Liu Y; Luo J
    ACS Appl Mater Interfaces; 2020 Apr; 12(16):18859-18869. PubMed ID: 32233416
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Macroscale Superlubricity on Engineering Steel in the Presence of Black Phosphorus.
    Tang G; Wu Z; Su F; Wang H; Xu X; Li Q; Ma G; Chu PK
    Nano Lett; 2021 Jun; 21(12):5308-5315. PubMed ID: 34076433
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Macroscale Superlubricity Enabled by the Synergy Effect of Graphene-Oxide Nanoflakes and Ethanediol.
    Ge X; Li J; Luo R; Zhang C; Luo J
    ACS Appl Mater Interfaces; 2018 Nov; 10(47):40863-40870. PubMed ID: 30388363
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Superlubricity of Black Phosphorus as Lubricant Additive.
    Wang W; Xie G; Luo J
    ACS Appl Mater Interfaces; 2018 Dec; 10(49):43203-43210. PubMed ID: 30419751
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Self-Adaptive Macroscale Superlubricity Based on the Tribocatalytic Properties of Partially Oxidized Black Phosphorus.
    Gao K; Bin W; Berman D; Ren Y; Luo J; Xie G
    Nano Lett; 2023 Aug; 23(15):6823-6830. PubMed ID: 37486802
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Boundary Slip of Oil Molecules at MoS
    Li J; Li J; Yi S; Wang K
    ACS Appl Mater Interfaces; 2022 Feb; 14(6):8644-8653. PubMed ID: 35119817
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Toward Robust Macroscale Superlubricity on Engineering Steel Substrate.
    Li P; Ju P; Ji L; Li H; Liu X; Chen L; Zhou H; Chen J
    Adv Mater; 2020 Sep; 32(36):e2002039. PubMed ID: 32715515
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synergistic Lubrication Effect between Oxidized Black Phosphorus and Oil Molecules Triggers Superlubricity.
    Li J; Li J
    J Phys Chem Lett; 2022 Sep; 13(35):8245-8253. PubMed ID: 36018294
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fluorinated Graphene: A Promising Macroscale Solid Lubricant under Various Environments.
    Liu Y; Li J; Chen X; Luo J
    ACS Appl Mater Interfaces; 2019 Oct; 11(43):40470-40480. PubMed ID: 31577116
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Liquid Superlubricity Enabled by the Synergy Effect of Graphene Oxide and Lithium Salts.
    Ge X; Chai Z; Shi Q; Liu Y; Tang J; Wang W
    Materials (Basel); 2022 May; 15(10):. PubMed ID: 35629573
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Macroscale Superlubricity Enabled by Hydrated Alkali Metal Ions.
    Han T; Zhang C; Luo J
    Langmuir; 2018 Sep; 34(38):11281-11291. PubMed ID: 30175911
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Extreme-Pressure Superlubricity of Polymer Solution Enhanced with Hydrated Salt Ions.
    Li S; Bai P; Li Y; Jia W; Li X; Meng Y; Ma L; Tian Y
    Langmuir; 2020 Jun; 36(24):6765-6774. PubMed ID: 32460491
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Superlubricity of Graphite Induced by Multiple Transferred Graphene Nanoflakes.
    Li J; Gao T; Luo J
    Adv Sci (Weinh); 2018 Mar; 5(3):1700616. PubMed ID: 29593965
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Superlubricity of Graphite Sliding against Graphene Nanoflake under Ultrahigh Contact Pressure.
    Li J; Li J; Luo J
    Adv Sci (Weinh); 2018 Nov; 5(11):1800810. PubMed ID: 30479926
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tunable, Wide-Temperature, and Macroscale Superlubricity Enabled by Nanoscale Van Der Waals Heterojunction-to-Homojunction Transformation.
    Yang X; Li R; Wang Y; Zhang J
    Adv Mater; 2023 Sep; 35(39):e2303580. PubMed ID: 37354130
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Macroscale Superlubricity Enabled by Graphene-Coated Surfaces.
    Zhang Z; Du Y; Huang S; Meng F; Chen L; Xie W; Chang K; Zhang C; Lu Y; Lin CT; Li S; Parkin IP; Guo D
    Adv Sci (Weinh); 2020 Feb; 7(4):1903239. PubMed ID: 32099768
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Macroscale Superlubricity and Polymorphism of Long-Chain
    Reddyhoff T; Ewen JP; Deshpande P; Frogley MD; Welch MD; Montgomery W
    ACS Appl Mater Interfaces; 2021 Feb; 13(7):9239-9251. PubMed ID: 33565870
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 3D-Printed Topological MoS
    Zhao Y; Mei H; Chang P; Yang Y; Huang W; Liu Y; Cheng L; Zhang L
    ACS Appl Mater Interfaces; 2021 Jul; 13(29):34984-34995. PubMed ID: 34278775
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Macroscale Superlubricity of Hydrated Anions in the Boundary Lubrication Regime.
    Han T; Zhao M; Sun C; Zhao R; Xu W; Zhang S; Singh S; Luo J; Zhang C
    ACS Appl Mater Interfaces; 2023 Sep; 15(35):42094-42103. PubMed ID: 37625155
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.