These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
492 related articles for article (PubMed ID: 34190589)
1. Characterization of Selected Plant Growth-Promoting Rhizobacteria and Their Non-Host Growth Promotion Effects. Fan D; Smith DL Microbiol Spectr; 2021 Sep; 9(1):e0027921. PubMed ID: 34190589 [TBL] [Abstract][Full Text] [Related]
2. Phylogenetic analysis of halophyte-associated rhizobacteria and effect of halotolerant and halophilic phosphate-solubilizing biofertilizers on maize growth under salinity stress conditions. Mukhtar S; Zareen M; Khaliq Z; Mehnaz S; Malik KA J Appl Microbiol; 2020 Feb; 128(2):556-573. PubMed ID: 31652362 [TBL] [Abstract][Full Text] [Related]
3. Plant endophytes promote growth and alleviate salt stress in Arabidopsis thaliana. Fan D; Subramanian S; Smith DL Sci Rep; 2020 Jul; 10(1):12740. PubMed ID: 32728116 [TBL] [Abstract][Full Text] [Related]
4. Comparative effectiveness of ACC-deaminase and/or nitrogen-fixing rhizobacteria in promotion of maize (Zea mays L.) growth under lead pollution. Hassan W; Bano R; Bashir F; David J Environ Sci Pollut Res Int; 2014 Sep; 21(18):10983-96. PubMed ID: 24888619 [TBL] [Abstract][Full Text] [Related]
5. Growth promotion and yield enhancement of peanut (Arachis hypogaea L.) by application of plant growth-promoting rhizobacteria. Dey R; Pal KK; Bhatt DM; Chauhan SM Microbiol Res; 2004; 159(4):371-94. PubMed ID: 15646384 [TBL] [Abstract][Full Text] [Related]
6. A comparative analysis of exopolysaccharide and phytohormone secretions by four drought-tolerant rhizobacterial strains and their impact on osmotic-stress mitigation in Arabidopsis thaliana. Ghosh D; Gupta A; Mohapatra S World J Microbiol Biotechnol; 2019 May; 35(6):90. PubMed ID: 31147784 [TBL] [Abstract][Full Text] [Related]
7. Isolation, characterization, and use for plant growth promotion under salt stress, of ACC deaminase-producing halotolerant bacteria derived from coastal soil. Siddikee MA; Chauhan PS; Anandham R; Han GH; Sa T J Microbiol Biotechnol; 2010 Nov; 20(11):1577-84. PubMed ID: 21124065 [TBL] [Abstract][Full Text] [Related]
8. Isolation, identification and characterization of Paenibacillus polymyxa CR1 with potentials for biopesticide, biofertilization, biomass degradation and biofuel production. Weselowski B; Nathoo N; Eastman AW; MacDonald J; Yuan ZC BMC Microbiol; 2016 Oct; 16(1):244. PubMed ID: 27756215 [TBL] [Abstract][Full Text] [Related]
9. Enhancement of alfalfa yield and quality by plant growth-promoting rhizobacteria under saline-alkali conditions. Liu J; Tang L; Gao H; Zhang M; Guo C J Sci Food Agric; 2019 Jan; 99(1):281-289. PubMed ID: 29855046 [TBL] [Abstract][Full Text] [Related]
10. Effect of plant growth promoting rhizobacteria containing ACC-deaminase on maize (Zea mays L.) growth under axenic conditions and on nodulation in mung bean (Vigna radiata L.). Shaharoona B; Arshad M; Zahir ZA Lett Appl Microbiol; 2006 Feb; 42(2):155-9. PubMed ID: 16441381 [TBL] [Abstract][Full Text] [Related]
11. Preliminary investigations on inducing salt tolerance in maize through inoculation with rhizobacteria containing ACC deaminase activity. Nadeem SM; Zahir ZA; Naveed M; Arshad M Can J Microbiol; 2007 Oct; 53(10):1141-9. PubMed ID: 18026206 [TBL] [Abstract][Full Text] [Related]
12. The Microphenotron: a novel method for screening plant growth-promoting rhizobacteria. Raheem A; Ali B PeerJ; 2022; 10():e13438. PubMed ID: 35586133 [TBL] [Abstract][Full Text] [Related]
13. Effectiveness of multi-trait Burkholderia contaminans KNU17BI1 in growth promotion and management of banded leaf and sheath blight in maize seedling. Tagele SB; Kim SW; Lee HG; Kim HS; Lee YS Microbiol Res; 2018 Sep; 214():8-18. PubMed ID: 30031484 [TBL] [Abstract][Full Text] [Related]
14. Medicago truncatula Gaertn. as a model for understanding the mechanism of growth promotion by bacteria from rhizosphere and nodules of alfalfa. Kisiel A; Kępczyńska E Planta; 2016 May; 243(5):1169-89. PubMed ID: 26861677 [TBL] [Abstract][Full Text] [Related]
15. Plant Growth-Promoting Rhizobacteria Inoculation to Enhance Vegetative Growth, Nitrogen Fixation and Nitrogen Remobilisation of Maize under Greenhouse Conditions. Kuan KB; Othman R; Abdul Rahim K; Shamsuddin ZH PLoS One; 2016; 11(3):e0152478. PubMed ID: 27011317 [TBL] [Abstract][Full Text] [Related]
16. Plant-growth promoting effect of newly isolated rhizobacteria varies between two Arabidopsis ecotypes. Schwachtje J; Karojet S; Kunz S; Brouwer S; van Dongen JT Plant Signal Behav; 2012 Jun; 7(6):623-7. PubMed ID: 22580689 [TBL] [Abstract][Full Text] [Related]
17. Physiological and genomic insights into a psychrotrophic drought-tolerant bacterial consortium for crop improvement in cold, semiarid regions. Borker SS; Sharma P; Thakur A; Kumar A; Kumar A; Kumar R Microbiol Res; 2024 Sep; 286():127818. PubMed ID: 38970906 [TBL] [Abstract][Full Text] [Related]
18. Characterization of cadmium-resistant rhizobacteria and their promotion effects on Brassica napus growth and cadmium uptake. Li X; Yan Z; Gu D; Li D; Tao Y; Zhang D; Su L; Ao Y J Basic Microbiol; 2019 Jun; 59(6):579-590. PubMed ID: 30980735 [TBL] [Abstract][Full Text] [Related]
19. Exploitation of agro-climatic environment for selection of 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase producing salt tolerant indigenous plant growth promoting rhizobacteria. Misra S; Dixit VK; Khan MH; Kumar Mishra S; Dviwedi G; Yadav S; Lehri A; Singh Chauhan P Microbiol Res; 2017 Dec; 205():25-34. PubMed ID: 28942841 [TBL] [Abstract][Full Text] [Related]