These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 34191362)

  • 21. Molecular insights into the binding variance of the SARS-CoV-2 spike with human, cat and dog ACE2 proteins.
    Zang Y; Li X; Zhao Y; Wang H; Hao D; Zhang L; Yang Z; Yuan X; Zhang S
    Phys Chem Chem Phys; 2021 Jun; 23(24):13752-13759. PubMed ID: 34132301
    [TBL] [Abstract][Full Text] [Related]  

  • 22. ACE2 glycans preferentially interact with SARS-CoV-2 over SARS-CoV.
    Acharya A; Lynch DL; Pavlova A; Pang YT; Gumbart JC
    Chem Commun (Camb); 2021 Jun; 57(48):5949-5952. PubMed ID: 34019602
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Computational design of SARS-CoV-2 peptide binders with better predicted binding affinities than human ACE2 receptor.
    Sitthiyotha T; Chunsrivirot S
    Sci Rep; 2021 Aug; 11(1):15650. PubMed ID: 34341401
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Protein structure analysis of the interactions between SARS-CoV-2 spike protein and the human ACE2 receptor: from conformational changes to novel neutralizing antibodies.
    Mercurio I; Tragni V; Busto F; De Grassi A; Pierri CL
    Cell Mol Life Sci; 2021 Feb; 78(4):1501-1522. PubMed ID: 32623480
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Structures of the Omicron spike trimer with ACE2 and an anti-Omicron antibody.
    Yin W; Xu Y; Xu P; Cao X; Wu C; Gu C; He X; Wang X; Huang S; Yuan Q; Wu K; Hu W; Huang Z; Liu J; Wang Z; Jia F; Xia K; Liu P; Wang X; Song B; Zheng J; Jiang H; Cheng X; Jiang Y; Deng SJ; Xu HE
    Science; 2022 Mar; 375(6584):1048-1053. PubMed ID: 35133176
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Evolutionary and structural analysis elucidates mutations on SARS-CoV2 spike protein with altered human ACE2 binding affinity.
    Chakraborty S
    Biochem Biophys Res Commun; 2021 Jan; 538():97-103. PubMed ID: 33602511
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Computational Hot-Spot Analysis of the SARS-CoV-2 Receptor Binding Domain/ACE2 Complex*.
    Rosario PA; McNaughton BR
    Chembiochem; 2021 Apr; 22(7):1196-1200. PubMed ID: 33174669
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Mutations on RBD of SARS-CoV-2 Omicron variant result in stronger binding to human ACE2 receptor.
    Lupala CS; Ye Y; Chen H; Su XD; Liu H
    Biochem Biophys Res Commun; 2022 Jan; 590():34-41. PubMed ID: 34968782
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Competitive SARS-CoV-2 Serology Reveals Most Antibodies Targeting the Spike Receptor-Binding Domain Compete for ACE2 Binding.
    Byrnes JR; Zhou XX; Lui I; Elledge SK; Glasgow JE; Lim SA; Loudermilk RP; Chiu CY; Wang TT; Wilson MR; Leung KK; Wells JA
    mSphere; 2020 Sep; 5(5):. PubMed ID: 32938700
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Probing structural basis for enhanced binding of SARS-CoV-2 P.1 variant spike protein with the human ACE2 receptor.
    Lata S; Akif M
    J Cell Biochem; 2022 Jul; 123(7):1207-1221. PubMed ID: 35620980
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Stabilizing the closed SARS-CoV-2 spike trimer.
    Juraszek J; Rutten L; Blokland S; Bouchier P; Voorzaat R; Ritschel T; Bakkers MJG; Renault LLR; Langedijk JPM
    Nat Commun; 2021 Jan; 12(1):244. PubMed ID: 33431842
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The molecular basis for SARS-CoV-2 binding to dog ACE2.
    Zhang Z; Zhang Y; Liu K; Li Y; Lu Q; Wang Q; Zhang Y; Wang L; Liao H; Zheng A; Ma S; Fan Z; Li H; Huang W; Bi Y; Zhao X; Wang Q; Gao GF; Xiao H; Tong Z; Qi J; Sun Y
    Nat Commun; 2021 Jul; 12(1):4195. PubMed ID: 34234119
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Structural modeling of Omicron spike protein and its complex with human ACE-2 receptor: Molecular basis for high transmissibility of the virus.
    Koley T; Kumar M; Goswami A; Ethayathulla AS; Hariprasad G
    Biochem Biophys Res Commun; 2022 Feb; 592():51-53. PubMed ID: 35026605
    [TBL] [Abstract][Full Text] [Related]  

  • 34. COVID-19: Myths and Reality.
    Kordyukova LV; Shanko AV
    Biochemistry (Mosc); 2021 Jul; 86(7):800-817. PubMed ID: 34284707
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Angiotensin-Converting Enzyme 2 (ACE2) in the Pathogenesis of ARDS in COVID-19.
    Kuba K; Yamaguchi T; Penninger JM
    Front Immunol; 2021; 12():732690. PubMed ID: 35003058
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Why Does the Novel Coronavirus Spike Protein Interact so Strongly with the Human ACE2? A Thermodynamic Answer.
    de Andrade J; Gonçalves PFB; Netz PA
    Chembiochem; 2021 Mar; 22(5):865-875. PubMed ID: 33084150
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Interactions of angiotensin-converting enzyme-2 (ACE2) and SARS-CoV-2 spike receptor-binding domain (RBD): a structural perspective.
    Borkotoky S; Dey D; Hazarika Z
    Mol Biol Rep; 2023 Mar; 50(3):2713-2721. PubMed ID: 36562937
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Tinocordiside from
    Balkrishna A; Pokhrel S; Varshney A
    Comb Chem High Throughput Screen; 2021; 24(10):1795-1802. PubMed ID: 33172372
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Molecular Dynamics Studies on the Structural Characteristics for the Stability Prediction of SARS-CoV-2.
    Choi KE; Kim JM; Rhee J; Park AK; Kim EJ; Kang NS
    Int J Mol Sci; 2021 Aug; 22(16):. PubMed ID: 34445414
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Allosteric Cross-Talk among Spike's Receptor-Binding Domain Mutations of the SARS-CoV-2 South African Variant Triggers an Effective Hijacking of Human Cell Receptor.
    Spinello A; Saltalamacchia A; Borišek J; Magistrato A
    J Phys Chem Lett; 2021 Jul; 12(25):5987-5993. PubMed ID: 34161095
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.