BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 34191398)

  • 1. Development of an efficient plant dual cytosine and adenine editor.
    Xu R; Kong F; Qin R; Li J; Liu X; Wei P
    J Integr Plant Biol; 2021 Sep; 63(9):1600-1605. PubMed ID: 34191398
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High performance TadA-8e derived cytosine and dual base editors with undetectable off-target effects in plants.
    Fan T; Cheng Y; Wu Y; Liu S; Tang X; He Y; Liao S; Zheng X; Zhang T; Qi Y; Zhang Y
    Nat Commun; 2024 Jun; 15(1):5103. PubMed ID: 38877035
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Base editing in rice: current progress, advances, limitations, and future perspectives.
    Yarra R; Sahoo L
    Plant Cell Rep; 2021 Apr; 40(4):595-604. PubMed ID: 33423074
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Re-engineering the adenine deaminase TadA-8e for efficient and specific CRISPR-based cytosine base editing.
    Chen L; Zhu B; Ru G; Meng H; Yan Y; Hong M; Zhang D; Luan C; Zhang S; Wu H; Gao H; Bai S; Li C; Ding R; Xue N; Lei Z; Chen Y; Guan Y; Siwko S; Cheng Y; Song G; Wang L; Yi C; Liu M; Li D
    Nat Biotechnol; 2023 May; 41(5):663-672. PubMed ID: 36357717
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-efficiency and multiplex adenine base editing in plants using new TadA variants.
    Yan D; Ren B; Liu L; Yan F; Li S; Wang G; Sun W; Zhou X; Zhou H
    Mol Plant; 2021 May; 14(5):722-731. PubMed ID: 33631420
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evolution of an adenine base editor into a small, efficient cytosine base editor with low off-target activity.
    Neugebauer ME; Hsu A; Arbab M; Krasnow NA; McElroy AN; Pandey S; Doman JL; Huang TP; Raguram A; Banskota S; Newby GA; Tolar J; Osborn MJ; Liu DR
    Nat Biotechnol; 2023 May; 41(5):673-685. PubMed ID: 36357719
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genome editing with type II-C CRISPR-Cas9 systems from Neisseria meningitidis in rice.
    Xu R; Qin R; Xie H; Li J; Liu X; Zhu M; Sun Y; Yu Y; Lu P; Wei P
    Plant Biotechnol J; 2022 Feb; 20(2):350-359. PubMed ID: 34582079
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of an efficient and precise adenine base editor (ABE) with expanded target range in allotetraploid cotton (Gossypium hirsutum).
    Wang G; Xu Z; Wang F; Huang Y; Xin Y; Liang S; Li B; Si H; Sun L; Wang Q; Ding X; Zhu X; Chen L; Yu L; Lindsey K; Zhang X; Jin S
    BMC Biol; 2022 Feb; 20(1):45. PubMed ID: 35164736
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Simplified adenine base editors improve adenine base editing efficiency in rice.
    Hua K; Tao X; Liang W; Zhang Z; Gou R; Zhu JK
    Plant Biotechnol J; 2020 Mar; 18(3):770-778. PubMed ID: 31469505
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Diverse nucleotide substitutions in rice base editing mediated by novel TadA variants.
    Yu M; Kuang Y; Wang C; Wu X; Li S; Zhang D; Sun W; Zhou X; Ren B; Zhou H
    Plant Commun; 2024 May; ():100926. PubMed ID: 38725246
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of TALE-adenine base editors in plants.
    Zhang D; Boch J
    Plant Biotechnol J; 2024 May; 22(5):1067-1077. PubMed ID: 37997697
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Expanding the base editing scope in rice by using Cas9 variants.
    Hua K; Tao X; Zhu JK
    Plant Biotechnol J; 2019 Feb; 17(2):499-504. PubMed ID: 30051586
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genome editing mediated by SpCas9 variants with broad non-canonical PAM compatibility in plants.
    Li J; Xu R; Qin R; Liu X; Kong F; Wei P
    Mol Plant; 2021 Feb; 14(2):352-360. PubMed ID: 33383203
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Base-Editing-Mediated Artificial Evolution of OsALS1 In Planta to Develop Novel Herbicide-Tolerant Rice Germplasms.
    Kuang Y; Li S; Ren B; Yan F; Spetz C; Li X; Zhou X; Zhou H
    Mol Plant; 2020 Apr; 13(4):565-572. PubMed ID: 32001363
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Targeted C•G-to-T•A base editing with TALE-cytosine deaminases in plants.
    Zhang D; Pries V; Boch J
    BMC Biol; 2024 Apr; 22(1):99. PubMed ID: 38679734
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A/C Simultaneous Conversion Using the Dual Base Editor in Human Cells.
    Zhang X; Guan Y; Li D
    Methods Mol Biol; 2023; 2606():63-72. PubMed ID: 36592308
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Precise base editing in rice, wheat and maize with a Cas9-cytidine deaminase fusion.
    Zong Y; Wang Y; Li C; Zhang R; Chen K; Ran Y; Qiu JL; Wang D; Gao C
    Nat Biotechnol; 2017 May; 35(5):438-440. PubMed ID: 28244994
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rapid Vector Construction and Assessment of BE3 and Target-AID C to T Base Editing Systems in Rice Protoplasts.
    Sretenovic S; Pan C; Tang X; Zhang Y; Qi Y
    Methods Mol Biol; 2021; 2238():95-113. PubMed ID: 33471327
    [TBL] [Abstract][Full Text] [Related]  

  • 19. SWISS: multiplexed orthogonal genome editing in plants with a Cas9 nickase and engineered CRISPR RNA scaffolds.
    Li C; Zong Y; Jin S; Zhu H; Lin D; Li S; Qiu JL; Wang Y; Gao C
    Genome Biol; 2020 Jun; 21(1):141. PubMed ID: 32546280
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Single Base Editing Using Cytidine Deaminase to Change Grain Size and Seed Coat Color in Rice.
    Tra MVT; Yin X; Bajal I; Balahadia CP; Quick WP; Bandyopadhyay A
    Methods Mol Biol; 2021; 2238():135-143. PubMed ID: 33471329
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.