These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
9. Tunable ionic transport control inside a bio-inspired constructive bi-channel nanofluidic device. Zeng L; Yang Z; Zhang H; Hou X; Tian Y; Yang F; Zhou J; Li L; Jiang L Small; 2014 Feb; 10(4):793-801. PubMed ID: 24031024 [TBL] [Abstract][Full Text] [Related]
10. Bioinspired Heterogeneous Ion Pump Membranes: Unidirectional Selective Pumping and Controllable Gating Properties Stemming from Asymmetric Ionic Group Distribution. Zhang Z; Li P; Kong XY; Xie G; Qian Y; Wang Z; Tian Y; Wen L; Jiang L J Am Chem Soc; 2018 Jan; 140(3):1083-1090. PubMed ID: 29261309 [TBL] [Abstract][Full Text] [Related]
11. Engineering Polymeric Nanofluidic Membranes for Efficient Ionic Transport: Biomimetic Design, Material Construction, and Advanced Functionalities. Chen XC; Zhang H; Liu SH; Zhou Y; Jiang L ACS Nano; 2022 Nov; 16(11):17613-17640. PubMed ID: 36322865 [TBL] [Abstract][Full Text] [Related]
12. Control of electrochemical signals from quantum dots conjugated to organic materials by using DNA structure in an analog logic gate. Chen Q; Yoo SY; Chung YH; Lee JY; Min J; Choi JW Bioelectrochemistry; 2016 Oct; 111():1-6. PubMed ID: 27116705 [TBL] [Abstract][Full Text] [Related]
13. Wafer-scale integration of sacrificial nanofluidic chips for detecting and manipulating single DNA molecules. Wang C; Nam SW; Cotte JM; Jahnes CV; Colgan EG; Bruce RL; Brink M; Lofaro MF; Patel JV; Gignac LM; Joseph EA; Rao SP; Stolovitzky G; Polonsky S; Lin Q Nat Commun; 2017 Jan; 8():14243. PubMed ID: 28112157 [TBL] [Abstract][Full Text] [Related]
15. Highly-efficient gating of solid-state nanochannels by DNA supersandwich structure containing ATP aptamers: a nanofluidic IMPLICATION logic device. Jiang Y; Liu N; Guo W; Xia F; Jiang L J Am Chem Soc; 2012 Sep; 134(37):15395-401. PubMed ID: 22954022 [TBL] [Abstract][Full Text] [Related]
16. Switchable electrode controlled by Boolean logic gates using enzymes as input signals. Wang X; Zhou J; Tam TK; Katz E; Pita M Bioelectrochemistry; 2009 Nov; 77(1):69-73. PubMed ID: 19622418 [TBL] [Abstract][Full Text] [Related]
17. Engineering Smart Nanofluidic Systems for Artificial Ion Channels and Ion Pumps: From Single-Pore to Multichannel Membranes. Zhang Z; Huang X; Qian Y; Chen W; Wen L; Jiang L Adv Mater; 2020 Jan; 32(4):e1904351. PubMed ID: 31793736 [TBL] [Abstract][Full Text] [Related]
18. Voltage-gated nanofluidic devices for protein capture, concentration, and release. Rangharajan KK; Prakash S Analyst; 2022 Aug; 147(17):3817-3821. PubMed ID: 35916063 [TBL] [Abstract][Full Text] [Related]
19. Enabling electrical biomolecular detection in high ionic concentrations and enhancement of the detection limit thereof by coupling a nanofluidic crystal with reconfigurable ion concentration polarization. Ouyang W; Han J; Wang W Lab Chip; 2017 Nov; 17(22):3772-3784. PubMed ID: 28983543 [TBL] [Abstract][Full Text] [Related]
20. Self-powered molecule release systems activated with chemical signals processed through reconfigurable Implication or Inhibition Boolean logic gates. Bollella P; Guo Z; Edwardraja S; Krishna Kadambar V; Alexandrov K; Melman A; Katz E Bioelectrochemistry; 2021 Apr; 138():107735. PubMed ID: 33482577 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]