These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 3419175)

  • 1. Network thermodynamic analysis and stimulation of isotonic solute-coupled volume flow in leaky epithelia: an example of the use of network theory to provide the qualitative aspects of a complex system and its verification by stimulation.
    Fidelman ML; Mikulecky DC
    J Theor Biol; 1988 Jan; 130(1):73-93. PubMed ID: 3419175
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The lateral intercellular space as osmotic coupling compartment in isotonic transport.
    Larsen EH; Willumsen NJ; Møbjerg N; Sørensen JN
    Acta Physiol (Oxf); 2009 Jan; 195(1):171-86. PubMed ID: 18983444
    [TBL] [Abstract][Full Text] [Related]  

  • 3. On the derivation of the Kargol's mechanistic transport equations from the Kedem-Katchalsky phenomenological equations.
    Suchanek G
    Gen Physiol Biophys; 2005 Jun; 24(2):247-58. PubMed ID: 16118476
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Local osmosis and isotonic transport.
    Mathias RT; Wang H
    J Membr Biol; 2005 Nov; 208(1):39-53. PubMed ID: 16596445
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A new approach to epithelial isotonic fluid transport: an osmosensor feedback model.
    Hill AE; Shachar-Hill B
    J Membr Biol; 2006 Mar; 210(2):77-90. PubMed ID: 16868677
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A mathematical model of solute coupled water transport in toad intestine incorporating recirculation of the actively transported solute.
    Larsen EH; Sørensen JB; Sørensen JN
    J Gen Physiol; 2000 Aug; 116(2):101-24. PubMed ID: 10919860
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A network thermodynamic model of salt and water flow across the kidney proximal tubule.
    Thomas SR; Mikulecky DC
    Am J Physiol; 1978 Dec; 235(6):F638-48. PubMed ID: 736148
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Osmotic water flow in leaky epithelia.
    Diamond JM
    J Membr Biol; 1979 Dec; 51(3-4):195-216. PubMed ID: 395308
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fluid transport and ion fluxes in mammalian kidney proximal tubule: a model analysis of isotonic transport.
    Larsen EH; Møbjerg N; Sørensen JN
    Acta Physiol (Oxf); 2006; 187(1-2):177-89. PubMed ID: 16734754
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Models of coupled salt and water transport across leaky epithelia.
    Weinstein AM; Stephenson JL
    J Membr Biol; 1981 May; 60(1):1-20. PubMed ID: 6264088
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Osmotic, diffusive and convective volume and solute flows of ionic solutions through a horizontally mounted polymeric membrane.
    Jasik-Slezak J; Grzegorczyn S; Slezak A
    Polim Med; 2007; 37(3):31-46. PubMed ID: 18251203
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The use of linear nonequilibrium thermodynamics in the study of renal physiology.
    Essig A; Caplan SR
    Am J Physiol; 1979 Mar; 236(3):F211-9. PubMed ID: 371416
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Network form of the Kedem-Katchalsky equations for ternary non-electrolyte solutions. 1. Evaluation of Rij Peusner's coefficients for polymeric membrane].
    Batko KM; Slezak-Prochazka I; Slezak A
    Polim Med; 2013; 43(2):93-102. PubMed ID: 24044289
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Developing Kedem-Katchalsky equations of the transmembrane transport for binary nonhomogeneous non-electrolyte solutions.
    Slezak A; Jarzyńska M
    Polim Med; 2005; 35(1):15-20. PubMed ID: 16050073
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Membrane permeability modeling: Kedem-Katchalsky vs a two-parameter formalism.
    Kleinhans FW
    Cryobiology; 1998 Dec; 37(4):271-89. PubMed ID: 9917344
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An inverse approach to determine solute and solvent permeability parameters in artificial tissues.
    He Y; Devireddy RV
    Ann Biomed Eng; 2005 May; 33(5):709-18. PubMed ID: 15981870
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Network form of the Kedem-Katchalsky equations for ternary non-electrolyte solutions. 6. Evaluation of Kij Peusner's coefficients for polymeric membrane].
    Batko KM; Slęzak-Prochazka I; Slęzak A
    Polim Med; 2013; 43(4):277-95. PubMed ID: 24596042
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Standing-gradient osmotic flow. A mechanism for coupling of water and solute transport in epithelia.
    Diamond JM; Bossert WH
    J Gen Physiol; 1967 Sep; 50(8):2061-83. PubMed ID: 6066064
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrolyte transport across a simple epithelium. Steady-state and transient analysis.
    Weinstein AM; Stephenson JL
    Biophys J; 1979 Aug; 27(2):165-86. PubMed ID: 233579
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dilute solution approximation and generalization of the reflection coefficient method of describing volume and solute flows.
    Mikulecky DC
    Biophys J; 1973 Sep; 13(9):994-9. PubMed ID: 4733703
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.