These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 3419185)

  • 1. An ab initio molecular orbital study on the sequence-dependency of DNA conformation: an evaluation of intra- and inter-strand stacking interaction energy.
    Aida M
    J Theor Biol; 1988 Feb; 130(3):327-35. PubMed ID: 3419185
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of intrinsic stacking energies of ten unique dinucleotide steps in A-RNA and B-DNA duplexes. Can we determine correct order of stability by quantum-chemical calculations?
    Svozil D; Hobza P; Sponer J
    J Phys Chem B; 2010 Jan; 114(2):1191-203. PubMed ID: 20000584
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Base-base and deoxyribose-base stacking interactions in B-DNA and Z-DNA: a quantum-chemical study.
    Sponer J; Gabb HA; Leszczynski J; Hobza P
    Biophys J; 1997 Jul; 73(1):76-87. PubMed ID: 9199773
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Local conformational variations observed in B-DNA crystals do not improve base stacking: computational analysis of base stacking in a d(CATGGGCCCATG)(2) B<-->A intermediate crystal structure.
    Poner J; Florián J; Ng HL; Poner JE; Packová N
    Nucleic Acids Res; 2000 Dec; 28(24):4893-902. PubMed ID: 11121480
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sequence dependence of the B-A conformational transition of DNA.
    Mazur J; Sarai A; Jernigan RL
    Biopolymers; 1989 Jul; 28(7):1223-33. PubMed ID: 2775837
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sequence-dependent DNA structure. The role of base stacking interactions.
    Hunter CA
    J Mol Biol; 1993 Apr; 230(3):1025-54. PubMed ID: 8478917
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electronic structure of DNA by DV-X alpha cluster calculations: II. d(GG).d(CC), d(CG)2, d(GC)2 A and B conformations. (Part 2) Sugars and bases.
    Shinoda T; Shima N; Tsukada M
    Nucleic Acids Symp Ser; 1989; (21):85-6. PubMed ID: 2608491
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stabilization energies of the hydrogen-bonded and stacked structures of nucleic acid base pairs in the crystal geometries of CG, AT, and AC DNA steps and in the NMR geometry of the 5'-d(GCGAAGC)-3' hairpin: Complete basis set calculations at the MP2 and CCSD(T) levels.
    Dabkowska I; Gonzalez HV; Jurecka P; Hobza P
    J Phys Chem A; 2005 Feb; 109(6):1131-6. PubMed ID: 16833422
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of sequence on the conformation of the B-DNA helix.
    Subirana JA; Faria T
    Biophys J; 1997 Jul; 73(1):333-8. PubMed ID: 9199797
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The study of stacking energy for natural DNA sequences.
    Zhang CT; Shang ZX
    J Theor Biol; 1991 Mar; 149(2):257-63. PubMed ID: 2062095
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Global structure of a DNA three-way junction by solution NMR: towards prediction of 3H fold.
    Wu B; Girard F; van Buuren B; Schleucher J; Tessari M; Wijmenga S
    Nucleic Acids Res; 2004; 32(10):3228-39. PubMed ID: 15199171
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sequence preference for BI/BII conformations in DNA: MD and crystal structure data analysis.
    Madhumalar A; Bansal M
    J Biomol Struct Dyn; 2005 Aug; 23(1):13-27. PubMed ID: 15918673
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thermodynamics of unpaired terminal nucleotides on short RNA helixes correlates with stacking at helix termini in larger RNAs.
    Burkard ME; Kierzek R; Turner DH
    J Mol Biol; 1999 Jul; 290(5):967-82. PubMed ID: 10438596
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Intercalators. 1. Nature of stacking interactions between intercalators (ethidium, daunomycin, ellipticine, and 4',6-diaminide-2-phenylindole) and DNA base pairs. Ab initio quantum chemical, density functional theory, and empirical potential study.
    Reha D; Kabelác M; Ryjácek F; Sponer J; Sponer JE; Elstner M; Suhai S; Hobza P
    J Am Chem Soc; 2002 Apr; 124(13):3366-76. PubMed ID: 11916422
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparative studies on parallel and antiparallel duplex and triplex DNA.
    Liu CQ; Shi XF; Bai CL; Zhao J; Wang Y
    J Theor Biol; 1997 Feb; 184(3):319-25. PubMed ID: 9082068
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Energy hyperspace for stacking interaction in AU/AU dinucleotide step: Dispersion-corrected density functional theory study.
    Mukherjee S; Kailasam S; Bansal M; Bhattacharyya D
    Biopolymers; 2014 Jan; 101(1):107-20. PubMed ID: 23722519
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Intra- and intermolecular interactions between cyclic-AMP receptor protein and DNA: ab initio fragment molecular orbital study.
    Fukuzawa K; Komeiji Y; Mochizuki Y; Kato A; Nakano T; Tanaka S
    J Comput Chem; 2006 Jun; 27(8):948-60. PubMed ID: 16586530
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Aromatic Base Stacking in DNA: From ab initio Calculations to Molecular Dynamics Simulations.
    Sponer J; Berger I; Spačková N; Leszczynski J; Hobza P
    J Biomol Struct Dyn; 2000; 17 Suppl 1():1-24. PubMed ID: 22607400
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Geometric Patterns for Neighboring Bases Near the Stacked State in Nucleic Acid Strands.
    Sedova A; Banavali NK
    Biochemistry; 2017 Mar; 56(10):1426-1443. PubMed ID: 28187685
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Propeller-twisting of base-pairs and the conformational mobility of dinucleotide steps in DNA.
    el Hassan MA; Calladine CR
    J Mol Biol; 1996 May; 259(1):95-103. PubMed ID: 8648652
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.