These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 3419194)

  • 1. Bone curvature: sacrificing strength for load predictability?
    Bertram JE; Biewener AA
    J Theor Biol; 1988 Mar; 131(1):75-92. PubMed ID: 3419194
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Finite element analysis of a femur to deconstruct the paradox of bone curvature.
    Jade S; Tamvada KH; Strait DS; Grosse IR
    J Theor Biol; 2014 Jan; 341():53-63. PubMed ID: 24099719
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Curved bones: An adaptation to habitual loading.
    Milne N
    J Theor Biol; 2016 Oct; 407():18-24. PubMed ID: 27444401
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Musculoskeletal design in relation to body size.
    Biewener AA
    J Biomech; 1991; 24 Suppl 1():19-29. PubMed ID: 1791177
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In vivo strains in the femur of river cooter turtles (Pseudemys concinna) during terrestrial locomotion: tests of force-platform models of loading mechanics.
    Butcher MT; Espinoza NR; Cirilo SR; Blob RW
    J Exp Biol; 2008 Aug; 211(Pt 15):2397-407. PubMed ID: 18626073
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In vivo strains in the femur of the Virginia opossum (Didelphis virginiana) during terrestrial locomotion: testing hypotheses of evolutionary shifts in mammalian bone loading and design.
    Butcher MT; White BJ; Hudzik NB; Gosnell WC; Parrish JH; Blob RW
    J Exp Biol; 2011 Aug; 214(Pt 15):2631-40. PubMed ID: 21753057
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Curvature, length, and cross-sectional geometry of the femur and humerus in anthropoid primates.
    Yamanaka A; Gunji H; Ishida H
    Am J Phys Anthropol; 2005 May; 127(1):46-57. PubMed ID: 15472892
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Allometry of quadrupedal locomotion: the scaling of duty factor, bone curvature and limb orientation to body size.
    Biewener AA
    J Exp Biol; 1983 Jul; 105():147-71. PubMed ID: 6619724
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural consequences of transcortical holes in long bones loaded in torsion.
    Hipp JA; Edgerton BC; An KN; Hayes WC
    J Biomech; 1990; 23(12):1261-8. PubMed ID: 2292605
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A biomechanical study of the long bones in platyrrhines.
    Llorens L; Casinos A; Berge C; Majoral M; Jouffroy FK
    Folia Primatol (Basel); 2001; 72(4):201-16. PubMed ID: 11713408
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ex vivo biomechanical comparison of a 3.5 mm locking compression plate applied cranially and a 2.7 mm locking compression plate applied medially in a gap model of the distal aspect of the canine radius.
    Uhl JM; Kapatkin AS; Garcia TC; Stover SM
    Vet Surg; 2013 Oct; 42(7):840-6. PubMed ID: 24033354
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In vitro evidence of the structural optimization of the human skeletal bones.
    Cristofolini L
    J Biomech; 2015 Mar; 48(5):787-96. PubMed ID: 25596628
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lasting organ-level bone mechanoadaptation is unrelated to local strain.
    Javaheri B; Razi H; Gohin S; Wylie S; Chang YM; Salmon P; Lee PD; Pitsillides AA
    Sci Adv; 2020 Mar; 6(10):eaax8301. PubMed ID: 32181340
    [TBL] [Abstract][Full Text] [Related]  

  • 14. On the scaling of mammalian long bones.
    Garcia GJ; da Silva JK
    J Exp Biol; 2004 Apr; 207(Pt 9):1577-84. PubMed ID: 15037651
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysis of a tension/compression skeletal system: possible strain-specific differences in the hierarchical organization of bone.
    Skedros JG; Bloebaum RD; Mason MW; Bramble DM
    Anat Rec; 1994 Aug; 239(4):396-404. PubMed ID: 7978363
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Calculation of tibial loading using strain gauges.
    Funk JR; Crandall JR
    Biomed Sci Instrum; 2006; 42():160-5. PubMed ID: 16817602
    [TBL] [Abstract][Full Text] [Related]  

  • 17. What Are the Biomechanical Properties of the Taylor Spatial Frame™?
    Henderson DJ; Rushbrook JL; Harwood PJ; Stewart TD
    Clin Orthop Relat Res; 2017 May; 475(5):1472-1482. PubMed ID: 27896679
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Compression-bending of multi-component semi-rigid columns in response to axial loads and conjugate reciprocal extension-prediction of mechanical behaviours and implications for structural design.
    Lau EW
    J Mech Behav Biomed Mater; 2013 Jan; 17():112-25. PubMed ID: 23127643
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biomechanics of mammalian terrestrial locomotion.
    Biewener AA
    Science; 1990 Nov; 250(4984):1097-103. PubMed ID: 2251499
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In vitro bone strain distributions in a sample of primate pelves.
    Lewton KL
    J Anat; 2015 May; 226(5):458-77. PubMed ID: 25846322
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.