These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 34192267)

  • 41. The battle between host and SARS-CoV-2: Innate immunity and viral evasion strategies.
    Zhang S; Wang L; Cheng G
    Mol Ther; 2022 May; 30(5):1869-1884. PubMed ID: 35176485
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Mechanisms of Antiviral Immune Evasion of SARS-CoV-2.
    Beyer DK; Forero A
    J Mol Biol; 2022 Mar; 434(6):167265. PubMed ID: 34562466
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Dysregulated Interferon Response and Immune Hyperactivation in Severe COVID-19: Targeting STATs as a Novel Therapeutic Strategy.
    Eskandarian Boroujeni M; Sekrecka A; Antonczyk A; Hassani S; Sekrecki M; Nowicka H; Lopacinska N; Olya A; Kluzek K; Wesoly J; Bluyssen HAR
    Front Immunol; 2022; 13():888897. PubMed ID: 35663932
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Putative roles of vitamin D in modulating immune response and immunopathology associated with COVID-19.
    Kumar R; Rathi H; Haq A; Wimalawansa SJ; Sharma A
    Virus Res; 2021 Jan; 292():198235. PubMed ID: 33232783
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The effects of SARS-CoV-2 infection on modulating innate immunity and strategies of combating inflammatory response for COVID-19 therapy.
    Wang Y; Wu M; Li Y; Yuen HH; He ML
    J Biomed Sci; 2022 May; 29(1):27. PubMed ID: 35505345
    [TBL] [Abstract][Full Text] [Related]  

  • 46. COVID-19 and Toll-Like Receptor 4 (TLR4): SARS-CoV-2 May Bind and Activate TLR4 to Increase ACE2 Expression, Facilitating Entry and Causing Hyperinflammation.
    Aboudounya MM; Heads RJ
    Mediators Inflamm; 2021; 2021():8874339. PubMed ID: 33505220
    [TBL] [Abstract][Full Text] [Related]  

  • 47. COVID-19: from immune response to clinical intervention.
    Guo ZY; Tang YQ; Zhang ZB; Liu J; Zhuang YX; Li T
    Precis Clin Med; 2024 Sep; 7(3):pbae015. PubMed ID: 39139990
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Innate immune evasion by SARS-CoV-2: Comparison with SARS-CoV.
    Bouayad A
    Rev Med Virol; 2020 Nov; 30(6):1-9. PubMed ID: 32734714
    [TBL] [Abstract][Full Text] [Related]  

  • 49. IFI44 is an immune evasion biomarker for SARS-CoV-2 and
    Zheng Q; Wang D; Lin R; Lv Q; Wang W
    Front Immunol; 2022; 13():1013322. PubMed ID: 36189314
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Host Protective Immunity against Severe Acute Respiratory Coronavirus 2 (SARS-CoV-2) and the COVID-19 Vaccine-Induced Immunity against SARS-CoV-2 and Its Variants.
    Noor R
    Viruses; 2022 Nov; 14(11):. PubMed ID: 36423150
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Uncovering Novel Viral Innate Immune Evasion Strategies: What Has SARS-CoV-2 Taught Us?
    Tay DJW; Lew ZZR; Chu JJH; Tan KS
    Front Microbiol; 2022; 13():844447. PubMed ID: 35401477
    [TBL] [Abstract][Full Text] [Related]  

  • 52. SARS-CoV-2 Nsp5 Demonstrates Two Distinct Mechanisms Targeting RIG-I and MAVS To Evade the Innate Immune Response.
    Liu Y; Qin C; Rao Y; Ngo C; Feng JJ; Zhao J; Zhang S; Wang TY; Carriere J; Savas AC; Zarinfar M; Rice S; Yang H; Yuan W; Camarero JA; Yu J; Chen XS; Zhang C; Feng P
    mBio; 2021 Oct; 12(5):e0233521. PubMed ID: 34544279
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The exploration of phytocompounds theoretically combats SARS-CoV-2 pandemic against virus entry, viral replication and immune evasion.
    Chen TH; Tsai MJ; Chang CS; Xu L; Fu YS; Weng CF
    J Infect Public Health; 2023 Jan; 16(1):42-54. PubMed ID: 36470006
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Innate Immune Signaling and Proteolytic Pathways in the Resolution or Exacerbation of SARS-CoV-2 in Covid-19: Key Therapeutic Targets?
    Sallenave JM; Guillot L
    Front Immunol; 2020; 11():1229. PubMed ID: 32574272
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Current Strategies of Antiviral Drug Discovery for COVID-19.
    Mei M; Tan X
    Front Mol Biosci; 2021; 8():671263. PubMed ID: 34055887
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Overview of Immune Response During SARS-CoV-2 Infection: Lessons From the Past.
    Shah VK; Firmal P; Alam A; Ganguly D; Chattopadhyay S
    Front Immunol; 2020; 11():1949. PubMed ID: 32849654
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Coronavirus virulence genes with main focus on SARS-CoV envelope gene.
    DeDiego ML; Nieto-Torres JL; Jimenez-Guardeño JM; Regla-Nava JA; Castaño-Rodriguez C; Fernandez-Delgado R; Usera F; Enjuanes L
    Virus Res; 2014 Dec; 194():124-37. PubMed ID: 25093995
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Involvement of epigenetics in affecting host immunity during SARS-CoV-2 infection.
    Behura A; Naik L; Patel S; Das M; Kumar A; Mishra A; Nayak DK; Manna D; Mishra A; Dhiman R
    Biochim Biophys Acta Mol Basis Dis; 2023 Mar; 1869(3):166634. PubMed ID: 36577469
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Cholesterol 25-Hydroxylase inhibits SARS-CoV-2 and other coronaviruses by depleting membrane cholesterol.
    Wang S; Li W; Hui H; Tiwari SK; Zhang Q; Croker BA; Rawlings S; Smith D; Carlin AF; Rana TM
    EMBO J; 2020 Nov; 39(21):e106057. PubMed ID: 32944968
    [TBL] [Abstract][Full Text] [Related]  

  • 60.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.