These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 34192513)

  • 1. Source identity shapes spatial preference in primary auditory cortex during active navigation.
    Amaro D; Ferreiro DN; Grothe B; Pecka M
    Curr Biol; 2021 Sep; 31(17):3875-3883.e5. PubMed ID: 34192513
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Active Sound Localization Sharpens Spatial Tuning in Human Primary Auditory Cortex.
    van der Heijden K; Rauschecker JP; Formisano E; Valente G; de Gelder B
    J Neurosci; 2018 Oct; 38(40):8574-8587. PubMed ID: 30126968
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Egocentric and allocentric representations in auditory cortex.
    Town SM; Brimijoin WO; Bizley JK
    PLoS Biol; 2017 Jun; 15(6):e2001878. PubMed ID: 28617796
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evidence for cue-independent spatial representation in the human auditory cortex during active listening.
    Higgins NC; McLaughlin SA; Rinne T; Stecker GC
    Proc Natl Acad Sci U S A; 2017 Sep; 114(36):E7602-E7611. PubMed ID: 28827357
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Echo-acoustic flow shapes object representation in spatially complex acoustic scenes.
    Greiter W; Firzlaff U
    J Neurophysiol; 2017 Jun; 117(6):2113-2124. PubMed ID: 28275060
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Automatic domain-general processing of sound source identity in the left posterior middle frontal gyrus.
    Giordano BL; Pernet C; Charest I; Belizaire G; Zatorre RJ; Belin P
    Cortex; 2014 Sep; 58():170-85. PubMed ID: 25038309
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reversible Inactivation of Ferret Auditory Cortex Impairs Spatial and Nonspatial Hearing.
    Town SM; Poole KC; Wood KC; Bizley JK
    J Neurosci; 2023 Feb; 43(5):749-763. PubMed ID: 36604168
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Specialization for sound localization in fields A1, DZ, and PAF of cat auditory cortex.
    Lee CC; Middlebrooks JC
    J Assoc Res Otolaryngol; 2013 Feb; 14(1):61-82. PubMed ID: 23180228
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanisms of Sound Localization in Two Functionally Distinct Regions of the Auditory Cortex.
    Razak KA; Yarrow S; Brewton D
    J Neurosci; 2015 Dec; 35(49):16105-15. PubMed ID: 26658863
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cortical mechanisms of spatial hearing.
    van der Heijden K; Rauschecker JP; de Gelder B; Formisano E
    Nat Rev Neurosci; 2019 Oct; 20(10):609-623. PubMed ID: 31467450
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Neurons in primary auditory cortex represent sound source location in a cue-invariant manner.
    Wood KC; Town SM; Bizley JK
    Nat Commun; 2019 Jul; 10(1):3019. PubMed ID: 31289272
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrophysiological correlates of cocktail-party listening.
    Lewald J; Getzmann S
    Behav Brain Res; 2015 Oct; 292():157-66. PubMed ID: 26092714
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Auditory spatial and object processing in the human planum temporale: no evidence for selectivity.
    Smith KR; Hsieh IH; Saberi K; Hickok G
    J Cogn Neurosci; 2010 Apr; 22(4):632-9. PubMed ID: 19301992
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Keeping track of sound objects in space: The contribution of early-stage auditory areas.
    Da Costa S; Clarke S; Crottaz-Herbette S
    Hear Res; 2018 Sep; 366():17-31. PubMed ID: 29643021
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Competing sound sources reveal spatial effects in cortical processing.
    Maddox RK; Billimoria CP; Perrone BP; Shinn-Cunningham BG; Sen K
    PLoS Biol; 2012; 10(5):e1001319. PubMed ID: 22563301
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hearing Scenes: A Neuromagnetic Signature of Auditory Source and Reverberant Space Separation.
    Teng S; Sommer VR; Pantazis D; Oliva A
    eNeuro; 2017; 4(1):. PubMed ID: 28451630
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Representation of Auditory Motion Directions and Sound Source Locations in the Human Planum Temporale.
    Battal C; Rezk M; Mattioni S; Vadlamudi J; Collignon O
    J Neurosci; 2019 Mar; 39(12):2208-2220. PubMed ID: 30651333
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A population rate code of auditory space in the human cortex.
    Salminen NH; May PJ; Alku P; Tiitinen H
    PLoS One; 2009 Oct; 4(10):e7600. PubMed ID: 19855836
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cooperative population coding facilitates efficient sound-source separability by adaptation to input statistics.
    Gleiss H; Encke J; Lingner A; Jennings TR; Brosel S; Kunz L; Grothe B; Pecka M
    PLoS Biol; 2019 Jul; 17(7):e3000150. PubMed ID: 31356637
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Neural realignment of spatially separated sound components.
    Salminen NH; Takanen M; Santala O; Alku P; Pulkki V
    J Acoust Soc Am; 2015 Jun; 137(6):3356-65. PubMed ID: 26093425
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.