These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 34192544)

  • 1. Principles of 3D compartmentalization of the human genome.
    Nichols MH; Corces VG
    Cell Rep; 2021 Jun; 35(13):109330. PubMed ID: 34192544
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Organizational principles of 3D genome architecture.
    Rowley MJ; Corces VG
    Nat Rev Genet; 2018 Dec; 19(12):789-800. PubMed ID: 30367165
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evolutionarily Conserved Principles Predict 3D Chromatin Organization.
    Rowley MJ; Nichols MH; Lyu X; Ando-Kuri M; Rivera ISM; Hermetz K; Wang P; Ruan Y; Corces VG
    Mol Cell; 2017 Sep; 67(5):837-852.e7. PubMed ID: 28826674
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chromatin Architecture in the Fly: Living without CTCF/Cohesin Loop Extrusion?: Alternating Chromatin States Provide a Basis for Domain Architecture in Drosophila.
    Matthews NE; White R
    Bioessays; 2019 Sep; 41(9):e1900048. PubMed ID: 31264253
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural Modeling of Chromatin Integrates Genome Features and Reveals Chromosome Folding Principle.
    Xie WJ; Meng L; Liu S; Zhang L; Cai X; Gao YQ
    Sci Rep; 2017 Jun; 7(1):2818. PubMed ID: 28588240
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genomic Marks Associated with Chromatin Compartments in the CTCF, RNAPII Loop and Genomic Windows.
    SzczepiƄska T; Mollah AF; Plewczynski D
    Int J Mol Sci; 2021 Oct; 22(21):. PubMed ID: 34769020
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chromatin organization by an interplay of loop extrusion and compartmental segregation.
    Nuebler J; Fudenberg G; Imakaev M; Abdennur N; Mirny LA
    Proc Natl Acad Sci U S A; 2018 Jul; 115(29):E6697-E6706. PubMed ID: 29967174
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The role of 3D genome organization in development and cell differentiation.
    Zheng H; Xie W
    Nat Rev Mol Cell Biol; 2019 Sep; 20(9):535-550. PubMed ID: 31197269
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Compartmentalization of the cell nucleus and spatial organization of the genome].
    Gavrilov AA; Razin SV
    Mol Biol (Mosk); 2015; 49(1):26-45. PubMed ID: 25916108
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Role of Liquid-Liquid Phase Separation in the Compartmentalization of Cell Nucleus and Spatial Genome Organization.
    Razin SV; Gavrilov AA
    Biochemistry (Mosc); 2020 Jun; 85(6):643-650. PubMed ID: 32586227
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Large organized chromatin lysine domains help distinguish primitive from differentiated cell populations.
    Madani Tonekaboni SA; Haibe-Kains B; Lupien M
    Nat Commun; 2021 Jan; 12(1):499. PubMed ID: 33479238
    [TBL] [Abstract][Full Text] [Related]  

  • 12. SPIN reveals genome-wide landscape of nuclear compartmentalization.
    Wang Y; Zhang Y; Zhang R; van Schaik T; Zhang L; Sasaki T; Peric-Hupkes D; Chen Y; Gilbert DM; van Steensel B; Belmont AS; Ma J
    Genome Biol; 2021 Jan; 22(1):36. PubMed ID: 33446254
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Opposing Effects of Cohesin and Transcription on CTCF Organization Revealed by Super-resolution Imaging.
    Gu B; Comerci CJ; McCarthy DG; Saurabh S; Moerner WE; Wysocka J
    Mol Cell; 2020 Nov; 80(4):699-711.e7. PubMed ID: 33091336
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Three-Dimensional Genome Organization and Function in Drosophila.
    Schwartz YB; Cavalli G
    Genetics; 2017 Jan; 205(1):5-24. PubMed ID: 28049701
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spatial Organization of Chromatin: Transcriptional Control of Adaptive Immune Cell Development.
    Pongubala JMR; Murre C
    Front Immunol; 2021; 12():633825. PubMed ID: 33854505
    [TBL] [Abstract][Full Text] [Related]  

  • 16. CTCF mediates chromatin looping via N-terminal domain-dependent cohesin retention.
    Pugacheva EM; Kubo N; Loukinov D; Tajmul M; Kang S; Kovalchuk AL; Strunnikov AV; Zentner GE; Ren B; Lobanenkov VV
    Proc Natl Acad Sci U S A; 2020 Jan; 117(4):2020-2031. PubMed ID: 31937660
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Drosophila CTCF tandemly aligns with other insulator proteins at the borders of H3K27me3 domains.
    Van Bortle K; Ramos E; Takenaka N; Yang J; Wahi JE; Corces VG
    Genome Res; 2012 Nov; 22(11):2176-87. PubMed ID: 22722341
    [TBL] [Abstract][Full Text] [Related]  

  • 18. On the choreography of genome folding: A grand pas de deux of cohesin and CTCF.
    van Ruiten MS; Rowland BD
    Curr Opin Cell Biol; 2021 Jun; 70():84-90. PubMed ID: 33545664
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Computational Identification of Genomic Features That Influence 3D Chromatin Domain Formation.
    Mourad R; Cuvier O
    PLoS Comput Biol; 2016 May; 12(5):e1004908. PubMed ID: 27203237
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-resolution in situ hybridization analysis on the chromosomal interval 61C7-61C8 of Drosophila melanogaster reveals interbands as open chromatin domains.
    Zielke T; Glotov A; Saumweber H
    Chromosoma; 2016 Jun; 125(3):423-35. PubMed ID: 26520107
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.