These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
168 related articles for article (PubMed ID: 34192549)
1. Structural basis for sterol sensing by Scap and Insig. Yan R; Cao P; Song W; Li Y; Wang T; Qian H; Yan C; Yan N Cell Rep; 2021 Jun; 35(13):109299. PubMed ID: 34192549 [TBL] [Abstract][Full Text] [Related]
2. A structure of human Scap bound to Insig-2 suggests how their interaction is regulated by sterols. Yan R; Cao P; Song W; Qian H; Du X; Coates HW; Zhao X; Li Y; Gao S; Gong X; Liu X; Sui J; Lei J; Yang H; Brown AJ; Zhou Q; Yan C; Yan N Science; 2021 Mar; 371(6533):. PubMed ID: 33446483 [TBL] [Abstract][Full Text] [Related]
3. Sterol-regulated ubiquitination and degradation of Insig-1 creates a convergent mechanism for feedback control of cholesterol synthesis and uptake. Gong Y; Lee JN; Lee PC; Goldstein JL; Brown MS; Ye J Cell Metab; 2006 Jan; 3(1):15-24. PubMed ID: 16399501 [TBL] [Abstract][Full Text] [Related]
4. Three mutations in sterol-sensing domain of SCAP block interaction with insig and render SREBP cleavage insensitive to sterols. Yabe D; Xia ZP; Adams CM; Rawson RB Proc Natl Acad Sci U S A; 2002 Dec; 99(26):16672-7. PubMed ID: 12482938 [TBL] [Abstract][Full Text] [Related]
5. Crucial step in cholesterol homeostasis: sterols promote binding of SCAP to INSIG-1, a membrane protein that facilitates retention of SREBPs in ER. Yang T; Espenshade PJ; Wright ME; Yabe D; Gong Y; Aebersold R; Goldstein JL; Brown MS Cell; 2002 Aug; 110(4):489-500. PubMed ID: 12202038 [TBL] [Abstract][Full Text] [Related]
6. Insulin enhances the biogenesis of nuclear sterol regulatory element-binding protein (SREBP)-1c by posttranscriptional down-regulation of Insig-2A and its dissociation from SREBP cleavage-activating protein (SCAP).SREBP-1c complex. Yellaturu CR; Deng X; Park EA; Raghow R; Elam MB J Biol Chem; 2009 Nov; 284(46):31726-34. PubMed ID: 19759400 [TBL] [Abstract][Full Text] [Related]
7. Amplification of the gene for SCAP, coupled with Insig-1 deficiency, confers sterol resistance in mutant Chinese hamster ovary cells. Lee PC; Liu P; Li WP; Debose-Boyd RA J Lipid Res; 2007 Sep; 48(9):1944-54. PubMed ID: 17586788 [TBL] [Abstract][Full Text] [Related]
8. Isolation of sterol-resistant Chinese hamster ovary cells with genetic deficiencies in both Insig-1 and Insig-2. Lee PC; Sever N; Debose-Boyd RA J Biol Chem; 2005 Jul; 280(26):25242-9. PubMed ID: 15866869 [TBL] [Abstract][Full Text] [Related]
9. Membrane topology of human insig-1, a protein regulator of lipid synthesis. Feramisco JD; Goldstein JL; Brown MS J Biol Chem; 2004 Feb; 279(9):8487-96. PubMed ID: 14660594 [TBL] [Abstract][Full Text] [Related]
10. Structural advances in sterol-sensing domain-containing proteins. Wu X; Yan R; Cao P; Qian H; Yan N Trends Biochem Sci; 2022 Apr; 47(4):289-300. PubMed ID: 35012873 [TBL] [Abstract][Full Text] [Related]
11. Scap structures highlight key role for rotation of intertwined luminal loops in cholesterol sensing. Kober DL; Radhakrishnan A; Goldstein JL; Brown MS; Clark LD; Bai XC; Rosenbaum DM Cell; 2021 Jul; 184(14):3689-3701.e22. PubMed ID: 34139175 [TBL] [Abstract][Full Text] [Related]
12. Cholesterol-induced conformational change in SCAP enhanced by Insig proteins and mimicked by cationic amphiphiles. Adams CM; Goldstein JL; Brown MS Proc Natl Acad Sci U S A; 2003 Sep; 100(19):10647-52. PubMed ID: 12963821 [TBL] [Abstract][Full Text] [Related]
13. Sterols regulate processing of carbohydrate chains of wild-type SREBP cleavage-activating protein (SCAP), but not sterol-resistant mutants Y298C or D443N. Nohturfft A; Brown MS; Goldstein JL Proc Natl Acad Sci U S A; 1998 Oct; 95(22):12848-53. PubMed ID: 9789003 [TBL] [Abstract][Full Text] [Related]
14. Overexpression of membrane domain of SCAP prevents sterols from inhibiting SCAP.SREBP exit from endoplasmic reticulum. Yang T; Goldstein JL; Brown MS J Biol Chem; 2000 Sep; 275(38):29881-6. PubMed ID: 10896675 [TBL] [Abstract][Full Text] [Related]
15. Accelerated degradation of HMG CoA reductase mediated by binding of insig-1 to its sterol-sensing domain. Sever N; Yang T; Brown MS; Goldstein JL; DeBose-Boyd RA Mol Cell; 2003 Jan; 11(1):25-33. PubMed ID: 12535518 [TBL] [Abstract][Full Text] [Related]
16. Reconstitution of sterol-regulated endoplasmic reticulum-to-Golgi transport of SREBP-2 in insect cells by co-expression of mammalian SCAP and Insigs. Dobrosotskaya IY; Goldstein JL; Brown MS; Rawson RB J Biol Chem; 2003 Sep; 278(37):35837-43. PubMed ID: 12842885 [TBL] [Abstract][Full Text] [Related]
17. Sterol-regulated degradation of Insig-1 mediated by the membrane-bound ubiquitin ligase gp78. Lee JN; Song B; DeBose-Boyd RA; Ye J J Biol Chem; 2006 Dec; 281(51):39308-15. PubMed ID: 17043353 [TBL] [Abstract][Full Text] [Related]
18. Intramembrane glycine mediates multimerization of Insig-2, a requirement for sterol regulation in Chinese hamster ovary cells. Lee PC; DeBose-Boyd RA J Lipid Res; 2010 Jan; 51(1):192-201. PubMed ID: 19617589 [TBL] [Abstract][Full Text] [Related]
19. A novel processing system of sterol regulatory element-binding protein-1c regulated by polyunsaturated fatty acid. Nakakuki M; Kawano H; Notsu T; Imada K; Mizuguchi K; Shimano H J Biochem; 2014 May; 155(5):301-13. PubMed ID: 24729033 [TBL] [Abstract][Full Text] [Related]
20. Insig-2, a second endoplasmic reticulum protein that binds SCAP and blocks export of sterol regulatory element-binding proteins. Yabe D; Brown MS; Goldstein JL Proc Natl Acad Sci U S A; 2002 Oct; 99(20):12753-8. PubMed ID: 12242332 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]