These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

294 related articles for article (PubMed ID: 34192764)

  • 21. Expanding the Spectrum of Robotic Assistance in Cranial Neurosurgery.
    Pillai A; Ratnathankom A; Ramachandran SN; Udayakumaran S; Subhash P; Krishnadas A
    Oper Neurosurg (Hagerstown); 2019 Aug; 17(2):164-173. PubMed ID: 30203040
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Robotic neurosurgery: a preliminary study using an active vision-guided robotic arm for bone drilling and endoscopic manoeuvres.
    Awang MS; Abdullah MZ
    Malays J Med Sci; 2011 Apr; 18(2):53-7. PubMed ID: 22135587
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Robotics for surgery.
    Howe RD; Matsuoka Y
    Annu Rev Biomed Eng; 1999; 1():211-40. PubMed ID: 11701488
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Experimental new automatic tools for robotic stereotactic neurosurgery: towards "no hands" procedure of leads implantation into a brain target.
    Mazzone P; Arena P; Cantelli L; Spampinato G; Sposato S; Cozzolino S; Demarinis P; Muscato G
    J Neural Transm (Vienna); 2016 Jul; 123(7):737-750. PubMed ID: 27194228
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Techniques for Stereotactic Neurosurgery: Beyond the Frame, Toward the Intraoperative Magnetic Resonance Imaging-Guided and Robot-Assisted Approaches.
    Guo Z; Leong MC; Su H; Kwok KW; Chan DT; Poon WS
    World Neurosurg; 2018 Aug; 116():77-87. PubMed ID: 29730102
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Future Directions in Robotic Neurosurgery.
    Wagner CR; Phillips T; Roux S; Corrigan JP
    Oper Neurosurg (Hagerstown); 2021 Sep; 21(4):173-180. PubMed ID: 34051701
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Comparative Study of Robot-Assisted versus Conventional Frame-Based Deep Brain Stimulation Stereotactic Neurosurgery.
    Neudorfer C; Hunsche S; Hellmich M; El Majdoub F; Maarouf M
    Stereotact Funct Neurosurg; 2018; 96(5):327-334. PubMed ID: 30481770
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Robotic and artificial intelligence for keyhole neurosurgery: the ROBOCAST project, a multi-modal autonomous path planner.
    De Momi E; Ferrigno G
    Proc Inst Mech Eng H; 2010; 224(5):715-27. PubMed ID: 20718272
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Robotics in keyhole transcranial endoscope-assisted microsurgery: a critical review of existing systems and proposed specifications for new robotic platforms.
    Marcus HJ; Seneci CA; Payne CJ; Nandi D; Darzi A; Yang GZ
    Neurosurgery; 2014 Mar; 10 Suppl 1():84-95; discussion 95-6. PubMed ID: 23921708
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Computer-assisted neurosurgery.
    Maciunas RJ
    Clin Neurosurg; 2006; 53():267-71. PubMed ID: 17380761
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Robotics in Neurosurgery: Evolution, Current Challenges, and Compromises.
    Doulgeris JJ; Gonzalez-Blohm SA; Filis AK; Shea TM; Aghayev K; Vrionis FD
    Cancer Control; 2015 Jul; 22(3):352-9. PubMed ID: 26351892
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Robotics and neurosurgery.
    Nathoo N; Pesek T; Barnett GH
    Surg Clin North Am; 2003 Dec; 83(6):1339-50. PubMed ID: 14712870
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Robotics and future technical developments in pediatric urology.
    Esposito C; Autorino G; Castagnetti M; Cerulo M; Coppola V; Cardone R; Esposito G; Borgogni R; Escolino M
    Semin Pediatr Surg; 2021 Aug; 30(4):151082. PubMed ID: 34412879
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Hybrid Robotics for Endoscopic Transnasal Skull Base Surgery: Single-Centre Case Series.
    Zappa F; Madoglio A; Ferrari M; Mattavelli D; Schreiber A; Taboni S; Ferrari E; Rampinelli V; Belotti F; Piazza C; Fontanella MM; Nicolai P; Doglietto F
    Oper Neurosurg (Hagerstown); 2021 Nov; 21(6):426-435. PubMed ID: 34624091
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Artificial intelligence and robotic surgery: current perspective and future directions.
    Bhandari M; Zeffiro T; Reddiboina M
    Curr Opin Urol; 2020 Jan; 30(1):48-54. PubMed ID: 31724999
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Robotics in neurosurgery: Current prevalence and future directions.
    Singh R; Wang K; Qureshi MB; Rangel IC; Brown NJ; Shahrestani S; Gottfried ON; Patel NP; Bydon M
    Surg Neurol Int; 2022; 13():373. PubMed ID: 36128120
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Advancements in robotic surgery: innovations, challenges and future prospects.
    Chatterjee S; Das S; Ganguly K; Mandal D
    J Robot Surg; 2024 Jan; 18(1):28. PubMed ID: 38231455
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A telerobotic haptic system for minimally invasive stereotactic neurosurgery.
    Rossi A; Trevisani A; Zanotto V
    Int J Med Robot; 2005 Jan; 1(2):64-75. PubMed ID: 17518380
    [TBL] [Abstract][Full Text] [Related]  

  • 39. da Vinci robot-assisted keyhole neurosurgery: a cadaver study on feasibility and safety.
    Marcus HJ; Hughes-Hallett A; Cundy TP; Yang GZ; Darzi A; Nandi D
    Neurosurg Rev; 2015 Apr; 38(2):367-71; discussion 371. PubMed ID: 25516094
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Robot-assisted neurosurgery.
    Rizun PR; McBeth PB; Louw DF; Sutherland GR
    Semin Laparosc Surg; 2004 Jun; 11(2):99-106. PubMed ID: 15254648
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.