These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 34192806)

  • 1. Abnormal changes in motor cortical maps in humans with spinal cord injury.
    Tazoe T; Perez MA
    J Physiol; 2021 Nov; 599(22):5031-5045. PubMed ID: 34192806
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Changes in motoneuron excitability during voluntary muscle activity in humans with spinal cord injury.
    Vastano R; Perez MA
    J Neurophysiol; 2020 Feb; 123(2):454-461. PubMed ID: 31461361
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Impaired crossed facilitation of the corticospinal pathway after cervical spinal cord injury.
    Bunday KL; Perez MA
    J Neurophysiol; 2012 May; 107(10):2901-11. PubMed ID: 22357796
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Distinct Corticospinal and Reticulospinal Contributions to Voluntary Control of Elbow Flexor and Extensor Muscles in Humans with Tetraplegia.
    Sangari S; Perez MA
    J Neurosci; 2020 Nov; 40(46):8831-8841. PubMed ID: 32883710
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Parallel modulation of interhemispheric inhibition and the size of a cortical hand muscle representation during active contraction.
    Turco CV; Fassett HJ; Locke MB; El-Sayes J; Nelson AJ
    J Neurophysiol; 2019 Jul; 122(1):368-377. PubMed ID: 31116626
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Increased paired stimuli enhance corticospinal-motoneuronal plasticity in humans with spinal cord injury.
    Grover FM; Chen B; Perez MA
    J Neurophysiol; 2023 Jun; 129(6):1414-1422. PubMed ID: 36752493
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Corticomotor representation to a human forearm muscle changes following cervical spinal cord injury.
    Freund P; Rothwell J; Craggs M; Thompson AJ; Bestmann S
    Eur J Neurosci; 2011 Dec; 34(11):1839-46. PubMed ID: 22082003
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Acute intermittent hypoxia boosts spinal plasticity in humans with tetraplegia.
    Christiansen L; Chen B; Lei Y; Urbin MA; Richardson MSA; Oudega M; Sandhu M; Rymer WZ; Trumbower RD; Mitchell GS; Perez MA
    Exp Neurol; 2021 Jan; 335():113483. PubMed ID: 32987000
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The assessment of biceps voluntary activation with transcranial magnetic stimulation in individuals with tetraplegia.
    Roumengous T; Peterson CL
    Restor Neurol Neurosci; 2022; 40(3):169-184. PubMed ID: 35848044
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Potentiating paired corticospinal-motoneuronal plasticity after spinal cord injury.
    Bunday KL; Urbin MA; Perez MA
    Brain Stimul; 2018; 11(5):1083-1092. PubMed ID: 29848448
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Altered regulation of Ia afferent input during voluntary contraction in humans with spinal cord injury.
    Chen B; Perez MA
    Elife; 2022 Sep; 11():. PubMed ID: 36069767
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Physiological changes underlying bilateral isometric arm voluntary contractions in healthy humans.
    Soteropoulos DS; Perez MA
    J Neurophysiol; 2011 Apr; 105(4):1594-602. PubMed ID: 21273315
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Altered corticospinal function during movement preparation in humans with spinal cord injury.
    Federico P; Perez MA
    J Physiol; 2017 Jan; 595(1):233-245. PubMed ID: 27485306
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Distribution and latency of muscle responses to transcranial magnetic stimulation of motor cortex after spinal cord injury in humans.
    Calancie B; Alexeeva N; Broton JG; Suys S; Hall A; Klose KJ
    J Neurotrauma; 1999 Jan; 16(1):49-67. PubMed ID: 9989466
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prior history of FDI muscle contraction: different effect on MEP amplitude and muscle activity.
    Talis VL; Kazennikov OV; Castellote JM; Grishin AA; Ioffe ME
    Exp Brain Res; 2014 Mar; 232(3):803-10. PubMed ID: 24309748
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Motor cortical mapping of proximal upper extremity muscles following spinal cord injury.
    Brouwer B; Hopkins-Rosseel DH
    Spinal Cord; 1997 Apr; 35(4):205-12. PubMed ID: 9143081
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effect of tonic contraction of the finger muscle on the motor cortical representation of the contracting adjacent muscle.
    Jono Y; Chujo Y; Nomura Y; Tani K; Nikaido Y; Hatanaka R; Hiraoka K
    Somatosens Mot Res; 2015; 32(2):114-21. PubMed ID: 25874638
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Intensity dependent effects of transcranial direct current stimulation on corticospinal excitability in chronic spinal cord injury.
    Murray LM; Edwards DJ; Ruffini G; Labar D; Stampas A; Pascual-Leone A; Cortes M
    Arch Phys Med Rehabil; 2015 Apr; 96(4 Suppl):S114-21. PubMed ID: 25461825
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cortical and Subcortical Effects of Transcutaneous Spinal Cord Stimulation in Humans with Tetraplegia.
    Benavides FD; Jo HJ; Lundell H; Edgerton VR; Gerasimenko Y; Perez MA
    J Neurosci; 2020 Mar; 40(13):2633-2643. PubMed ID: 31996455
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The corticomotor projection to liminally-contractable forearm muscles in chronic spinal cord injury: a transcranial magnetic stimulation study.
    Cortes M; Thickbroom GW; Elder J; Rykman A; Valls-Sole J; Pascual-Leone A; Edwards DJ
    Spinal Cord; 2017 Apr; 55(4):362-366. PubMed ID: 27995943
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.