These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 34192861)

  • 1. [Application value of machine learning algorithms for predicting recurrence after resection of early-stage hepatocellular carcinoma].
    Ji GW; Wang K; Xia YX; Li XC; Wang XH
    Zhonghua Wai Ke Za Zhi; 2021 Aug; 59(8):679-685. PubMed ID: 34192861
    [No Abstract]   [Full Text] [Related]  

  • 2. Development of a machine learning model to predict early recurrence for hepatocellular carcinoma after curative resection.
    Zeng J; Zeng J; Lin K; Lin H; Wu Q; Guo P; Zhou W; Liu J
    Hepatobiliary Surg Nutr; 2022 Apr; 11(2):176-187. PubMed ID: 35464276
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Predicting Colorectal Cancer Survival Using Time-to-Event Machine Learning: Retrospective Cohort Study.
    Yang X; Qiu H; Wang L; Wang X
    J Med Internet Res; 2023 Oct; 25():e44417. PubMed ID: 37883174
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Machine-learning analysis of contrast-enhanced CT radiomics predicts recurrence of hepatocellular carcinoma after resection: A multi-institutional study.
    Ji GW; Zhu FP; Xu Q; Wang K; Wu MY; Tang WW; Li XC; Wang XH
    EBioMedicine; 2019 Dec; 50():156-165. PubMed ID: 31735556
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Application and Comparison of Machine Learning Models for the Prediction of Breast Cancer Prognosis: Retrospective Cohort Study.
    Xiao J; Mo M; Wang Z; Zhou C; Shen J; Yuan J; He Y; Zheng Y
    JMIR Med Inform; 2022 Feb; 10(2):e33440. PubMed ID: 35179504
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A radiomics-based model can predict recurrence-free survival of hepatocellular carcinoma after curative ablation.
    Peng W; Jiang X; Zhang W; Hu J; Zhang Y; Zhang L
    Asian J Surg; 2023 Jul; 46(7):2689-2696. PubMed ID: 36351862
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Deep learning models for predicting the survival of patients with hepatocellular carcinoma based on a surveillance, epidemiology, and end results (SEER) database analysis.
    Wang S; Shao M; Fu Y; Zhao R; Xing Y; Zhang L; Xu Y
    Sci Rep; 2024 Jun; 14(1):13232. PubMed ID: 38853169
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of preoperative and postoperative machine learning models to predict the recurrence of huge hepatocellular carcinoma following surgical resection.
    Zhang Q; Fang G; Huang T; Wei G; Li H; Liu J
    Oncol Lett; 2023 Jul; 26(1):275. PubMed ID: 37274474
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development and validation of machine learning models for predicting prognosis and guiding individualized postoperative chemotherapy: A real-world study of distal cholangiocarcinoma.
    Wang D; Pan B; Huang JC; Chen Q; Cui SP; Lang R; Lyu SC
    Front Oncol; 2023; 13():1106029. PubMed ID: 37007095
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Which model is better in predicting the survival of laryngeal squamous cell carcinoma?: Comparison of the random survival forest based on machine learning algorithms to Cox regression: analyses based on SEER database.
    Sun H; Wu S; Li S; Jiang X
    Medicine (Baltimore); 2023 Mar; 102(10):e33144. PubMed ID: 36897699
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Machine Learning Model Based on the Neutrophil-to-Eosinophil Ratio Predicts the Recurrence of Hepatocellular Carcinoma After Surgery.
    Shao G; Ma Y; Qu C; Gao R; Zhu C; Qu L; Liu K; Li N; Sun P; Cao J
    J Hepatocell Carcinoma; 2024; 11():679-691. PubMed ID: 38585292
    [TBL] [Abstract][Full Text] [Related]  

  • 12. MRI radiomics based on deep learning automated segmentation to predict early recurrence of hepatocellular carcinoma.
    Wei H; Zheng T; Zhang X; Wu Y; Chen Y; Zheng C; Jiang D; Wu B; Guo H; Jiang H; Song B
    Insights Imaging; 2024 May; 15(1):120. PubMed ID: 38763975
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nomograms Incorporating the CNLC Staging System Predict the Outcome of Hepatocellular Carcinoma After Curative Resection.
    Liao R; Wei XF; Che P; Yin KL; Liu L
    Front Oncol; 2021; 11():755920. PubMed ID: 35127471
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nomograms for Predicting Hepatocellular Carcinoma Recurrence and Overall Postoperative Patient Survival.
    Ma L; Deng K; Zhang C; Li H; Luo Y; Yang Y; Li C; Li X; Geng Z; Xie C
    Front Oncol; 2022; 12():843589. PubMed ID: 35296018
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Application of Machine Learning Models to Predict Recurrence After Surgical Resection of Nonmetastatic Renal Cell Carcinoma.
    Khene ZE; Bigot P; Doumerc N; Ouzaid I; Boissier R; Nouhaud FX; Albiges L; Bernhard JC; Ingels A; Borchiellini D; Kammerer-Jacquet S; Rioux-Leclercq N; Roupret M; Acosta O; De Crevoisier R; Bensalah K;
    Eur Urol Oncol; 2023 Jun; 6(3):323-330. PubMed ID: 35987730
    [TBL] [Abstract][Full Text] [Related]  

  • 16. How Does the Skeletal Oncology Research Group Algorithm's Prediction of 5-year Survival in Patients with Chondrosarcoma Perform on International Validation?
    Bongers MER; Karhade AV; Setola E; Gambarotti M; Groot OQ; Erdoğan KE; Picci P; Donati DM; Schwab JH; Palmerini E
    Clin Orthop Relat Res; 2020 Oct; 478(10):2300-2308. PubMed ID: 32433107
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Radiomic Features at Contrast-enhanced CT Predict Recurrence in Early Stage Hepatocellular Carcinoma: A Multi-Institutional Study.
    Ji GW; Zhu FP; Xu Q; Wang K; Wu MY; Tang WW; Li XC; Wang XH
    Radiology; 2020 Mar; 294(3):568-579. PubMed ID: 31934830
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Derivation and validation of machine learning models for preoperative estimation of microvascular invasion risk in hepatocellular carcinoma.
    Chen Z; Zuo X; Zhang Y; Han G; Zhang L; Ding W; Wu J; Wang X
    Ann Transl Med; 2023 Mar; 11(6):249. PubMed ID: 37082689
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of a machine learning-based model for predicting risk of early postoperative recurrence of hepatocellular carcinoma.
    Zhang YB; Yang G; Bu Y; Lei P; Zhang W; Zhang DY
    World J Gastroenterol; 2023 Nov; 29(43):5804-5817. PubMed ID: 38074914
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Use of machine learning models for identification of predictors of survival and tumour recurrence in liver transplant recipients with hepatocellular carcinoma.
    Bezjak M; Kocman B; Jadrijević S; Filipec Kanižaj T; Antonijević M; Dalbelo Bašić B; Mikulić D
    Ann Transl Med; 2023 Aug; 11(10):345. PubMed ID: 37675331
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.