These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

84 related articles for article (PubMed ID: 3419304)

  • 1. [Evaluation of the efficiency of the shaping of brehmstrahlung beams on electron accelerators].
    Pereletov ON; Vatnitskiĭ SM; Sinitsyn RV; Nikolaeva AA
    Med Radiol (Mosk); 1988 Sep; 33(9):73-7. PubMed ID: 3419304
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A beam-matching concept for medical linear accelerators.
    Sjöström D; Bjelkengren U; Ottosson W; Behrens CF
    Acta Oncol; 2009; 48(2):192-200. PubMed ID: 18752079
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Intraoperative radiotherapy with electrons: construction of facilities and dosimetry].
    Fellin G; Valentini A
    Radiol Med; 1990 Oct; 80(4 Suppl 1):109-13. PubMed ID: 2251396
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Analytical description of the dose fields from accelerated electrons].
    Kozlov VA; Denisenko ON
    Med Radiol (Mosk); 1983 Mar; 28(3):56-7. PubMed ID: 6835059
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dual scattering foil design for poly-energetic electron beams.
    Kainz KK; Antolak JA; Almond PR; Bloch CD; Hogstrom KR
    Phys Med Biol; 2005 Mar; 50(5):755-67. PubMed ID: 15798252
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Application of scattering foil systems for forming large-sized uniform electron therapy fields.
    Kozlov AP; Shishov VA; Zabrodin BV; Regel AV
    Strahlentherapie; 1982 Jul; 158(7):432-9. PubMed ID: 7135440
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dosimetric characteristics of electron beams produced by a mobile accelerator for IORT.
    Pimpinella M; Mihailescu D; Guerra AS; Laitano RF
    Phys Med Biol; 2007 Oct; 52(20):6197-214. PubMed ID: 17921580
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Absorbed dose from contaminant electrons inside and outside megavoltage photon beams.
    Raffaele L; Ielo I; Settineri N; Tosi G; Brambilla MG; Cattani F
    Radiol Med; 1993 Oct; 86(4):513-20. PubMed ID: 8248591
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Dose distributions of fast electrons with an energy of 7-24 Mev in electromagnetic beam formation].
    Shambulov RS; Khvan GV; Saĭbekov TS; Azhigaliev NA; Shuinbekov AD
    Med Radiol (Mosk); 1983 Mar; 28(3):14-8. PubMed ID: 6403798
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Hyperfractionation--a new challenge for medical electron linear accelerators?].
    Jensen JM; Ihnen E; Glaser T; Hillenberg HJ; Kohr P; Thoms M
    Strahlenther Onkol; 1990 Jun; 166(6):415-9. PubMed ID: 2363104
    [TBL] [Abstract][Full Text] [Related]  

  • 11. On the existence of low-energy photons (<150 keV) in the unflattened x-ray beam from an ordinary radiotherapeutic target in a medical linear accelerator.
    Tsechanski A; Krutman Y; Faermann S
    Phys Med Biol; 2005 Dec; 50(23):5629-39. PubMed ID: 16306657
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ecliptic method for the determination of backscatter into the beam monitor chambers in photon beams of medical accelerators.
    Sanz DE; Alvarez GD; Nelli FE
    Phys Med Biol; 2007 Mar; 52(6):1647-58. PubMed ID: 17327654
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Absorbed dose distribution for X-ray beams and beams of electrons from the Therac 10 Neptune linear accelerator.
    Tronc D; Gayet P
    Strahlentherapie; 1980 Feb; 156(2):125-8. PubMed ID: 7355413
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison between experimental measurements and calculated transport simulation for electron dose distributions inside homogeneous phantoms.
    Borrell-Carbonell A; Patau JP; Terrissol M; Tronc D
    Strahlentherapie; 1980 Mar; 156(3):186-91. PubMed ID: 7361334
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of megavoltage electron beams delivered through a photon multi-leaf collimator (pMLC).
    du Plessis FC; Leal A; Stathakis S; Xiong W; Ma CM
    Phys Med Biol; 2006 Apr; 51(8):2113-29. PubMed ID: 16585849
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Shielding design for a laser-accelerated proton therapy system.
    Fan J; Luo W; Fourkal E; Lin T; Li J; Veltchev I; Ma CM
    Phys Med Biol; 2007 Jul; 52(13):3913-30. PubMed ID: 17664585
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Forming of electron beams from a betatron by foil scatterers.
    Kozlov AP; Shishov VA
    Acta Radiol Ther Phys Biol; 1976 Dec; 15(6):493-512. PubMed ID: 829589
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Matching the dosimetry characteristics of a dual-field Stanford technique to a customized single-field Stanford technique for total skin electron therapy.
    Chen Z; Agostinelli AG; Wilson LD; Nath R
    Int J Radiat Oncol Biol Phys; 2004 Jul; 59(3):872-85. PubMed ID: 15183491
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Small-size betatron for electron therapy of surface tumors and its clinical evaluation].
    Musabaeva LI; Lisin VA; Polishchuk PF; Chakhlov VL; Kashkovskiĭ VV
    Med Radiol (Mosk); 1987 Dec; 32(12):43-7. PubMed ID: 3683131
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Charge collection efficiency in ionization chambers exposed to electron beams with high dose per pulse.
    Laitano RF; Guerra AS; Pimpinella M; Caporali C; Petrucci A
    Phys Med Biol; 2006 Dec; 51(24):6419-36. PubMed ID: 17148826
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.