These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 34193177)

  • 21. Locomotor skill acquisition in virtual reality shows sustained transfer to the real world.
    Kim A; Schweighofer N; Finley JM
    J Neuroeng Rehabil; 2019 Sep; 16(1):113. PubMed ID: 31521167
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The Trade-Off of Virtual Reality Training for Dart Throwing: A Facilitation of Perceptual-Motor Learning With a Detriment to Performance.
    Drew SA; Awad MF; Armendariz JA; Gabay B; Lachica IJ; Hinkel-Lipsker JW
    Front Sports Act Living; 2020; 2():59. PubMed ID: 33345050
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Functional performance comparison between real and virtual tasks in older adults: A cross-sectional study.
    Bezerra ÍMP; Crocetta TB; Massetti T; Silva TDD; Guarnieri R; Meira CM; Arab C; Abreu LC; Araujo LV; Monteiro CBM
    Medicine (Baltimore); 2018 Jan; 97(4):e9612. PubMed ID: 29369177
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Comparison of grasping movements made by healthy subjects in a 3-dimensional immersive virtual versus physical environment.
    Magdalon EC; Michaelsen SM; Quevedo AA; Levin MF
    Acta Psychol (Amst); 2011 Sep; 138(1):126-34. PubMed ID: 21684505
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effect of slow repetitive TMS of the motor cortex on ipsilateral sequential simple finger movements and motor skill learning.
    Kobayashi M
    Restor Neurol Neurosci; 2010; 28(4):437-48. PubMed ID: 20714068
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Transfer of complex skill learning from virtual to real rowing.
    Rauter G; Sigrist R; Koch C; Crivelli F; van Raai M; Riener R; Wolf P
    PLoS One; 2013; 8(12):e82145. PubMed ID: 24376518
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Spatial knowledge acquisition from maps and from navigation in real and virtual environments.
    Richardson AE; Montello DR; Hegarty M
    Mem Cognit; 1999 Jul; 27(4):741-50. PubMed ID: 10479831
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Declines in motor transfer following upper extremity task-specific training in older adults.
    Walter CS; Hengge CR; Lindauer BE; Schaefer SY
    Exp Gerontol; 2019 Feb; 116():14-19. PubMed ID: 30562555
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Learning in a virtual environment using haptic systems for movement re-education: can this medium be used for remodeling other behaviors and actions?
    Merians AS; Fluet GG; Qiu Q; Lafond I; Adamovich SV
    J Diabetes Sci Technol; 2011 Mar; 5(2):301-8. PubMed ID: 21527097
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Comparing physiological responses during cognitive tests in virtual environments vs. in identical real-world environments.
    Kalantari S; Rounds JD; Kan J; Tripathi V; Cruz-Garza JG
    Sci Rep; 2021 May; 11(1):10227. PubMed ID: 33986337
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Augmented feedback for powered wheelchair training in a virtual environment.
    Bigras C; Kairy D; Archambault PS
    J Neuroeng Rehabil; 2019 Jan; 16(1):12. PubMed ID: 30658668
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Symmetric interlimb transfer of newly acquired skilled movements.
    Yadav G; Mutha PK
    J Neurophysiol; 2020 Nov; 124(5):1364-1376. PubMed ID: 32902352
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Algorithm-Based Practice Schedule and Task Similarity Enhance Motor Learning in Older Adults.
    Beik M; Taheri H; Saberi Kakhki A; Ghoshuni M
    J Mot Behav; 2021; 53(4):458-470. PubMed ID: 32703098
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Cognitive and Motor Learning in Internally-Guided Motor Skills.
    Bera K; Shukla A; Bapi RS
    Front Psychol; 2021; 12():604323. PubMed ID: 33897525
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Motor performance of individuals with cerebral palsy in a virtual game using a mobile phone.
    de Paula JN; de Mello Monteiro CB; da Silva TD; Capelini CM; de Menezes LDC; Massetti T; Tonks J; Watson S; Nicolai Ré AH
    Disabil Rehabil Assist Technol; 2018 Aug; 13(6):609-613. PubMed ID: 29092683
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The effect of virtual reality-based balance training on motor learning and postural control in healthy adults: a randomized preliminary study.
    Prasertsakul T; Kaimuk P; Chinjenpradit W; Limroongreungrat W; Charoensuk W
    Biomed Eng Online; 2018 Sep; 17(1):124. PubMed ID: 30227884
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Vibrotactile feedback in virtual motor learning: A systematic review.
    Islam MS; Lim S
    Appl Ergon; 2022 May; 101():103694. PubMed ID: 35086007
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Convergent validation and transfer of learning studies of a virtual reality-based pattern cutting simulator.
    Nemani A; Ahn W; Cooper C; Schwaitzberg S; De S
    Surg Endosc; 2018 Mar; 32(3):1265-1272. PubMed ID: 28812196
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Learning redundant motor tasks with and without overlapping dimensions: facilitation and interference effects.
    Ranganathan R; Wieser J; Mosier KM; Mussa-Ivaldi FA; Scheidt RA
    J Neurosci; 2014 Jun; 34(24):8289-99. PubMed ID: 24920632
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A flexible sequential learning deficit in patients with Parkinson's disease: a 2 x 8 button-press task.
    Mochizuki-Kawai H; Mochizuki S; Kawamura M
    Exp Brain Res; 2010 Apr; 202(1):147-53. PubMed ID: 20020114
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.