These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 34193512)

  • 1. The Formin Fmn2b Is Required for the Development of an Excitatory Interneuron Module in the Zebrafish Acoustic Startle Circuit.
    Nagar D; James TK; Mishra R; Guha S; Burgess SM; Ghose A
    eNeuro; 2021; 8(4):. PubMed ID: 34193512
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A convergent and essential interneuron pathway for Mauthner-cell-mediated escapes.
    Lacoste AM; Schoppik D; Robson DN; Haesemeyer M; Portugues R; Li JM; Randlett O; Wee CL; Engert F; Schier AF
    Curr Biol; 2015 Jun; 25(11):1526-34. PubMed ID: 25959971
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Neural circuits that drive startle behavior, with a focus on the Mauthner cells and spiral fiber neurons of fishes.
    Hale ME; Katz HR; Peek MY; Fremont RT
    J Neurogenet; 2016 Jun; 30(2):89-100. PubMed ID: 27302612
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Local Spinal Cord Circuits and Bilateral Mauthner Cell Activity Function Together to Drive Alternative Startle Behaviors.
    Liu YC; Hale ME
    Curr Biol; 2017 Mar; 27(5):697-704. PubMed ID: 28216316
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Subcellular Dissection of a Simple Neural Circuit: Functional Domains of the Mauthner-Cell During Habituation.
    Bátora D; Zsigmond Á; Lőrincz IZ; Szegvári G; Varga M; Málnási-Csizmadia A
    Front Neural Circuits; 2021; 15():648487. PubMed ID: 33828462
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Celsr3 drives development and connectivity of the acoustic startle hindbrain circuit.
    Meserve JH; Navarro MF; Ortiz EA; Granato M
    bioRxiv; 2024 Mar; ():. PubMed ID: 38496637
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Cyfip2-Dependent Excitatory Interneuron Pathway Establishes the Innate Startle Threshold.
    Marsden KC; Jain RA; Wolman MA; Echeverry FA; Nelson JC; Hayer KE; Miltenberg B; Pereda AE; Granato M
    Cell Rep; 2018 Apr; 23(3):878-887. PubMed ID: 29669291
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Antagonistic Activities of Fmn2 and ADF Regulate Axonal F-Actin Patch Dynamics and the Initiation of Collateral Branching.
    Kundu T; Siva Das S; Sewatkar LK; Kumar DS; Nagar D; Ghose A
    J Neurosci; 2022 Sep; 42(39):7355-7369. PubMed ID: 36481742
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Social Status-Dependent Shift in Neural Circuit Activation Affects Decision Making.
    Miller TH; Clements K; Ahn S; Park C; Hye Ji E; Issa FA
    J Neurosci; 2017 Feb; 37(8):2137-2148. PubMed ID: 28093472
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fmn2 Regulates Growth Cone Motility by Mediating a Molecular Clutch to Generate Traction Forces.
    Ghate K; Mutalik SP; Sthanam LK; Sen S; Ghose A
    Neuroscience; 2020 Nov; 448():160-171. PubMed ID: 33002558
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Developmental Exposure to Domoic Acid Disrupts Startle Response Behavior and Circuitry in Zebrafish.
    Panlilio JM; Jones IT; Salanga MC; Aluru N; Hahn ME
    Toxicol Sci; 2021 Aug; 182(2):310-326. PubMed ID: 34097058
    [TBL] [Abstract][Full Text] [Related]  

  • 12. De novo deletion of FMN2 in a girl with mild non-syndromic intellectual disability.
    Almuqbil M; Hamdan FF; Mathonnet G; Rosenblatt B; Srour M
    Eur J Med Genet; 2013 Dec; 56(12):686-8. PubMed ID: 24161494
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phosphorylation of Gephyrin in Zebrafish Mauthner Cells Governs Glycine Receptor Clustering and Behavioral Desensitization to Sound.
    Ogino K; Yamada K; Nishioka T; Oda Y; Kaibuchi K; Hirata H
    J Neurosci; 2019 Nov; 39(45):8988-8997. PubMed ID: 31558619
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Behavioral Role of the Reciprocal Inhibition between a Pair of Mauthner Cells during Fast Escapes in Zebrafish.
    Shimazaki T; Tanimoto M; Oda Y; Higashijima SI
    J Neurosci; 2019 Feb; 39(7):1182-1194. PubMed ID: 30578342
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Formin 2 regulates the stabilization of filopodial tip adhesions in growth cones and affects neuronal outgrowth and pathfinding in vivo.
    Sahasrabudhe A; Ghate K; Mutalik S; Jacob A; Ghose A
    Development; 2016 Feb; 143(3):449-60. PubMed ID: 26718007
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of the C-terminal Extension of Formin 2 in Its Activation by Spire Protein and Processive Assembly of Actin Filaments.
    Montaville P; Kühn S; Compper C; Carlier MF
    J Biol Chem; 2016 Feb; 291(7):3302-18. PubMed ID: 26668326
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Formin 2 Regulates Lysosomal Degradation of Wnt-Associated β-Catenin in Neural Progenitors.
    Lian G; Chenn A; Ekuta V; Kanaujia S; Sheen V
    Cereb Cortex; 2019 May; 29(5):1938-1952. PubMed ID: 29659741
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mutations in deadly seven/notch1a reveal developmental plasticity in the escape response circuit.
    Liu KS; Gray M; Otto SJ; Fetcho JR; Beattie CE
    J Neurosci; 2003 Sep; 23(22):8159-66. PubMed ID: 12954879
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Neuroplasticity in the acoustic startle reflex in larval zebrafish.
    López-Schier H
    Curr Opin Neurobiol; 2019 Feb; 54():134-139. PubMed ID: 30359930
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The 5-HT5A receptor regulates excitability in the auditory startle circuit: functional implications for sensorimotor gating.
    Curtin PC; Medan V; Neumeister H; Bronson DR; Preuss T
    J Neurosci; 2013 Jun; 33(24):10011-20. PubMed ID: 23761896
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.