These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

315 related articles for article (PubMed ID: 34193554)

  • 41. Loss of HCN1 enhances disease progression in mouse models of CNG channel-linked retinitis pigmentosa and achromatopsia.
    Schön C; Asteriti S; Koch S; Sothilingam V; Garcia Garrido M; Tanimoto N; Herms J; Seeliger MW; Cangiano L; Biel M; Michalakis S
    Hum Mol Genet; 2016 Mar; 25(6):1165-75. PubMed ID: 26740549
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Oxidative stress-induced alterations in retinal glucose metabolism in Retinitis Pigmentosa.
    Kanan Y; Hackett SF; Taneja K; Khan M; Campochiaro PA
    Free Radic Biol Med; 2022 Mar; 181():143-153. PubMed ID: 35134532
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Enhancer of Zeste Homolog 2 (EZH2) Contributes to Rod Photoreceptor Death Process in Several Forms of Retinal Degeneration and Its Activity Can Serve as a Biomarker for Therapy Efficacy.
    Mbefo M; Berger A; Schouwey K; Gérard X; Kostic C; Beryozkin A; Sharon D; Dolfuss H; Munier F; Tran HV; van Lohuizen M; Beltran WA; Arsenijevic Y
    Int J Mol Sci; 2021 Aug; 22(17):. PubMed ID: 34502238
    [TBL] [Abstract][Full Text] [Related]  

  • 44. HDAC inhibition ameliorates cone survival in retinitis pigmentosa mice.
    Samardzija M; Corna A; Gomez-Sintes R; Jarboui MA; Armento A; Roger JE; Petridou E; Haq W; Paquet-Durand F; Zrenner E; de la Villa P; Zeck G; Grimm C; Boya P; Ueffing M; Trifunović D
    Cell Death Differ; 2021 Apr; 28(4):1317-1332. PubMed ID: 33159184
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Targeting Relevant HDACs to Support the Survival of Cone Photoreceptors in Inherited Retinal Diseases: Identification of a Potent Pharmacological Tool with In Vitro and In Vivo Efficacy.
    Carullo G; Orsini N; Piano I; Pozzetti L; Papa A; Fontana A; Napoli D; Corsi F; Marco BD; Galante A; Marotta L; Panzeca G; O'Brien J; Sanchez AG; Doherty H; Mahon N; Clarke L; Contri C; Pasquini S; Gorelli B; Saponara S; Valoti M; Vincenzi F; Varani K; Ramunno A; Brogi S; Butini S; Gemma S; Kennedy BN; Gargini C; Strettoi E; Campiani G
    J Med Chem; 2024 Sep; 67(17):14946-14973. PubMed ID: 38961727
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Cell Death Pathways in Mutant Rhodopsin Rat Models Identifies Genotype-Specific Targets Controlling Retinal Degeneration.
    Viringipurampeer IA; Gregory-Evans CY; Metcalfe AL; Bashar E; Moritz OL; Gregory-Evans K
    Mol Neurobiol; 2019 Mar; 56(3):1637-1652. PubMed ID: 29911255
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Histone Deacetylase 1 Is Essential for Rod Photoreceptor Differentiation by Regulating Acetylation at Histone H3 Lysine 9 and Histone H4 Lysine 12 in the Mouse Retina.
    Ferreira RC; Popova EY; James J; Briones MR; Zhang SS; Barnstable CJ
    J Biol Chem; 2017 Feb; 292(6):2422-2440. PubMed ID: 28028172
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Opposing Effects of Valproic Acid Treatment Mediated by Histone Deacetylase Inhibitor Activity in Four Transgenic
    Vent-Schmidt RYJ; Wen RH; Zong Z; Chiu CN; Tam BM; May CG; Moritz OL
    J Neurosci; 2017 Jan; 37(4):1039-1054. PubMed ID: 28490005
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Disrupted Plasma Membrane Protein Homeostasis in a
    Ropelewski P; Imanishi Y
    J Neurosci; 2019 Jul; 39(28):5581-5593. PubMed ID: 31061086
    [TBL] [Abstract][Full Text] [Related]  

  • 50. GUCY2D Cone-Rod Dystrophy-6 Is a "Phototransduction Disease" Triggered by Abnormal Calcium Feedback on Retinal Membrane Guanylyl Cyclase 1.
    Sato S; Peshenko IV; Olshevskaya EV; Kefalov VJ; Dizhoor AM
    J Neurosci; 2018 Mar; 38(12):2990-3000. PubMed ID: 29440533
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Retinal structure and function preservation by polysaccharides of wolfberry in a mouse model of retinal degeneration.
    Wang K; Xiao J; Peng B; Xing F; So KF; Tipoe GL; Lin B
    Sci Rep; 2014 Dec; 4():7601. PubMed ID: 25535040
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Reprogramming metabolism by targeting sirtuin 6 attenuates retinal degeneration.
    Zhang L; Du J; Justus S; Hsu CW; Bonet-Ponce L; Wu WH; Tsai YT; Wu WP; Jia Y; Duong JK; Mahajan VB; Lin CS; Wang S; Hurley JB; Tsang SH
    J Clin Invest; 2016 Dec; 126(12):4659-4673. PubMed ID: 27841758
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Müller glia phagocytose dead photoreceptor cells in a mouse model of retinal degenerative disease.
    Sakami S; Imanishi Y; Palczewski K
    FASEB J; 2019 Mar; 33(3):3680-3692. PubMed ID: 30462532
    [TBL] [Abstract][Full Text] [Related]  

  • 54. DNA methylation and differential gene regulation in photoreceptor cell death.
    Farinelli P; Perera A; Arango-Gonzalez B; Trifunovic D; Wagner M; Carell T; Biel M; Zrenner E; Michalakis S; Paquet-Durand F; Ekström PA
    Cell Death Dis; 2014 Dec; 5(12):e1558. PubMed ID: 25476906
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Wolfberry-derived zeaxanthin dipalmitate delays retinal degeneration in a mouse model of retinitis pigmentosa through modulating STAT3, CCL2 and MAPK pathways.
    Liu F; Liu X; Zhou Y; Yu Y; Wang K; Zhou Z; Gao H; So KF; Vardi N; Xu Y
    J Neurochem; 2021 Sep; 158(5):1131-1150. PubMed ID: 34265077
    [TBL] [Abstract][Full Text] [Related]  

  • 56. HIF-1α stabilization reduces retinal degeneration in a mouse model of retinitis pigmentosa.
    Olivares-González L; Martínez-Fernández de la Cámara C; Hervás D; Millán JM; Rodrigo R
    FASEB J; 2018 May; 32(5):2438-2451. PubMed ID: 29295858
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Modulation of GSK-3 provides cellular and functional neuroprotection in the rd10 mouse model of retinitis pigmentosa.
    Sánchez-Cruz A; Villarejo-Zori B; Marchena M; Zaldivar-Díez J; Palomo V; Gil C; Lizasoain I; de la Villa P; Martínez A; de la Rosa EJ; Hernández-Sánchez C
    Mol Neurodegener; 2018 Apr; 13(1):19. PubMed ID: 29661219
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Inhibition of Matrix Metalloproteinase 9 Enhances Rod Survival in the S334ter-line3 Retinitis Pigmentosa Model.
    Shin JA; Kim HS; Vargas A; Yu WQ; Eom YS; Craft CM; Lee EJ
    PLoS One; 2016; 11(11):e0167102. PubMed ID: 27893855
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Gene expression changes within Müller glial cells in retinitis pigmentosa.
    Roesch K; Stadler MB; Cepko CL
    Mol Vis; 2012; 18():1197-214. PubMed ID: 22665967
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A Pro23His mutation alters prenatal rod photoreceptor morphology in a transgenic swine model of retinitis pigmentosa.
    Scott PA; Fernandez de Castro JP; Kaplan HJ; McCall MA
    Invest Ophthalmol Vis Sci; 2014 Apr; 55(4):2452-9. PubMed ID: 24618321
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.