These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
213 related articles for article (PubMed ID: 34193845)
21. Comparative study on fruit development and oil synthesis in two cultivars of Camellia oleifera. Zhang F; Li Z; Zhou J; Gu Y; Tan X BMC Plant Biol; 2021 Jul; 21(1):348. PubMed ID: 34301189 [TBL] [Abstract][Full Text] [Related]
22. Integrative Metabolome and Transcriptome Analysis Reveals the Regulatory Network of Flavonoid Biosynthesis in Response to MeJA in Yan H; Zheng W; Wang Y; Wu Y; Yu J; Xia P Int J Mol Sci; 2022 Aug; 23(16):. PubMed ID: 36012624 [TBL] [Abstract][Full Text] [Related]
23. Integrated analysis of transcriptomic and proteomic data from tree peony ( Wang X; Liang H; Guo D; Guo L; Duan X; Jia Q; Hou X Hortic Res; 2019; 6():111. PubMed ID: 31645965 [TBL] [Abstract][Full Text] [Related]
24. Sugar Metabolism and Transcriptome Analysis Reveal Key Sugar Transporters during He Y; Chen R; Yang Y; Liang G; Zhang H; Deng X; Xi R Int J Mol Sci; 2022 Jan; 23(2):. PubMed ID: 35055010 [No Abstract] [Full Text] [Related]
25. Full-length transcriptome sequencing provides insights into flavonoid biosynthesis in Camellia nitidissima Petals. Liu H; Liu Q; Chen Y; Zhu Y; Zhou X; Li B Gene; 2023 Jan; 850():146924. PubMed ID: 36191826 [TBL] [Abstract][Full Text] [Related]
26. Hormone analysis and candidate genes identification associated with seed size in Ji K; Song Q; Yu X; Tan C; Wang L; Chen L; Xiang X; Gong W; Yuan D R Soc Open Sci; 2022 Mar; 9(3):211138. PubMed ID: 35360359 [No Abstract] [Full Text] [Related]
27. Transcriptome analysis reveals crucial genes involved in the biosynthesis of nervonic acid in woody Malania oleifera oilseeds. Yang T; Yu Q; Xu W; Li DZ; Chen F; Liu A BMC Plant Biol; 2018 Oct; 18(1):247. PubMed ID: 30340521 [TBL] [Abstract][Full Text] [Related]
28. Transcriptome and Anatomical Comparisons Reveal the Effects of Methyl Jasmonate on the Seed Development of Song Q; Gong W; Yu X; Ji K; Jiang Y; Chang Y; Yuan D J Agric Food Chem; 2023 May; 71(17):6747-6762. PubMed ID: 37026572 [TBL] [Abstract][Full Text] [Related]
29. High throughput sequencing of small RNAs reveals dynamic microRNAs expression of lipid metabolism during Camellia oleifera and C. meiocarpa seed natural drying. Feng JL; Yang ZJ; Chen SP; El-Kassaby YA; Chen H BMC Genomics; 2017 Jul; 18(1):546. PubMed ID: 28728593 [TBL] [Abstract][Full Text] [Related]
30. Transcriptomic analysis of Perilla frutescens seed to insight into the biosynthesis and metabolic of unsaturated fatty acids. Liao B; Hao Y; Lu J; Bai H; Guan L; Zhang T BMC Genomics; 2018 Mar; 19(1):213. PubMed ID: 29562889 [TBL] [Abstract][Full Text] [Related]
31. WGCNA and transcriptome profiling reveal hub genes for key development stage seed size/oil content between wild and cultivated soybean. Yao Y; Xiong E; Qu X; Li J; Liu H; Quan L; Lu W; Zhu X; Chen M; Li K; Chen X; Lian Y; Lu W; Zhang D; Zhou X; Chu S; Jiao Y BMC Genomics; 2023 Aug; 24(1):494. PubMed ID: 37641045 [TBL] [Abstract][Full Text] [Related]
32. A De novo Transcriptomic Approach to Identify Flavonoids and Anthocyanins "Switch-Off" in Olive (Olea europaea L.) Drupes at Different Stages of Maturation. Iaria DL; Chiappetta A; Muzzalupo I Front Plant Sci; 2015; 6():1246. PubMed ID: 26834761 [TBL] [Abstract][Full Text] [Related]
33. Analysis and evaluation of Camellia oleifera Abel. Germplasm fruit traits from the high-altitude areas of East Guizhou Province, China. Wan X; Sun D; Nie Y; Wang Q; Zhang T; Wang R; Li F; Zhao X; Gao C Sci Rep; 2024 Aug; 14(1):18440. PubMed ID: 39117844 [TBL] [Abstract][Full Text] [Related]
34. Determination of the evolutionary pressure on Zhang W; Zhao Y; Yang G; Peng J; Chen S; Xu Z PeerJ; 2019; 7():e7210. PubMed ID: 31289703 [No Abstract] [Full Text] [Related]
35. Enhancing the accumulation of linoleic acid and α-linolenic acid through the pre-harvest ethylene treatment in Li H; Ma X; Wang W; Zhang J; Liu Y; Yuan D Front Plant Sci; 2023; 14():1080946. PubMed ID: 36909386 [No Abstract] [Full Text] [Related]
36. Fatty acids and nutritional components of the seed oil from Wangmo red ball Camellia oleifera grown in the low-heat valley of Guizhou, China. Long L; Gao C; Qiu J; Yang L; Wei H; Zhou Y Sci Rep; 2022 Oct; 12(1):16554. PubMed ID: 36192507 [TBL] [Abstract][Full Text] [Related]
37. Proteomic analysis of the seed development in Jatropha curcas: from carbon flux to the lipid accumulation. Liu H; Wang C; Komatsu S; He M; Liu G; Shen S J Proteomics; 2013 Oct; 91():23-40. PubMed ID: 23835435 [TBL] [Abstract][Full Text] [Related]
38. Differential wound activation of members of the phenylalanine ammonia-lyase and 4-coumarate:CoA ligase gene families in various organs of parsley plants. Lois R; Hahlbrock K Z Naturforsch C J Biosci; 1992; 47(1-2):90-4. PubMed ID: 1376996 [TBL] [Abstract][Full Text] [Related]
39. Combined genome-wide association analysis and transcriptome sequencing to identify candidate genes for flax seed fatty acid metabolism. Xie D; Dai Z; Yang Z; Tang Q; Deng C; Xu Y; Wang J; Chen J; Zhao D; Zhang S; Zhang S; Su J Plant Sci; 2019 Sep; 286():98-107. PubMed ID: 31300147 [TBL] [Abstract][Full Text] [Related]
40. Comparative transcriptome among Euscaphis konishii Hayata tissues and analysis of genes involved in flavonoid biosynthesis and accumulation. Liang W; Ni L; Carballar-Lejarazú R; Zou X; Sun W; Wu L; Yuan X; Mao Y; Huang W; Zou S BMC Genomics; 2019 Jan; 20(1):24. PubMed ID: 30626333 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]