These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
155 related articles for article (PubMed ID: 34194336)
1. The First Female Dry Immersion (NAIAD-2020): Design and Specifics of a 3-Day Study. Tomilovskaya E; Amirova L; Nosikova I; Rukavishnikov I; Chernogorov R; Lebedeva S; Saveko A; Ermakov I; Ponomarev I; Zelenskaya I; Shigueva T; Shishkin N; Kitov V; Riabova A; Brykov V; Abu Sheli N; Vassilieva G; Orlov O Front Physiol; 2021; 12():661959. PubMed ID: 34194336 [TBL] [Abstract][Full Text] [Related]
2. NAIAD-2020: Characteristics of Motor Evoked Potentials After 3-Day Exposure to Dry Immersion in Women. Nosikova I; Riabova A; Amirova L; Kitov V; Tomilovskaya E Front Hum Neurosci; 2021; 15():753259. PubMed ID: 34924980 [TBL] [Abstract][Full Text] [Related]
3. Assessment of the Psychophysiological State of Female Operators Under Simulated Microgravity. Lebedeva S; Shved D; Savinkina A Front Physiol; 2021; 12():751016. PubMed ID: 35222056 [TBL] [Abstract][Full Text] [Related]
4. Multi-System Deconditioning in 3-Day Dry Immersion without Daily Raise. De Abreu S; Amirova L; Murphy R; Wallace R; Twomey L; Gauquelin-Koch G; Raverot V; Larcher F; Custaud MA; Navasiolava N Front Physiol; 2017; 8():799. PubMed ID: 29081752 [TBL] [Abstract][Full Text] [Related]
5. Dry Immersion as a Ground-Based Model of Microgravity Physiological Effects. Tomilovskaya E; Shigueva T; Sayenko D; Rukavishnikov I; Kozlovskaya I Front Physiol; 2019; 10():284. PubMed ID: 30971938 [TBL] [Abstract][Full Text] [Related]
6. Intervertebral Disc Swelling Demonstrated by 3D and Water Content Magnetic Resonance Analyses after a 3-Day Dry Immersion Simulating Microgravity. Treffel L; Mkhitaryan K; Gellee S; Gauquelin-Koch G; Gharib C; Blanc S; Millet C Front Physiol; 2016; 7():605. PubMed ID: 27994557 [No Abstract] [Full Text] [Related]
7. Sharp Changes in Muscle Tone in Humans Under Simulated Microgravity. Amirova LE; Plehuna A; Rukavishnikov IV; Saveko AA; Peipsi A; Tomilovskaya ES Front Physiol; 2021; 12():661922. PubMed ID: 34025451 [TBL] [Abstract][Full Text] [Related]
8. Human muscle atrophy in supportlessness: effects of short-term exposure to dry immersion. Shenkman BS; Kozlovskaya IB; Nemirovskaya TL; Tcheglova IA J Gravit Physiol; 1997 Jul; 4(2):P137-8. PubMed ID: 11540680 [TBL] [Abstract][Full Text] [Related]
9. Prolonged water immersion. Effects on blood pressure maturation in normotensive rats. Magrini F; Reggiani P; Ciulla M; Meazza R; Branzi G Hypertension; 1992 May; 19(5):482-7. PubMed ID: 1568767 [TBL] [Abstract][Full Text] [Related]
10. Pain and Vertebral Dysfunction in Dry Immersion: A Model of Microgravity Simulation Different from Bed Rest Studies. Treffel L; Massabuau N; Zuj K; Custaud MA; Gauquelin-Koch G; Blanc S; Gharib C; Millet C Pain Res Manag; 2017; 2017():9602131. PubMed ID: 28785161 [TBL] [Abstract][Full Text] [Related]
11. Central chemosensitivity is augmented during 2 h of thermoneutral head-out water immersion in healthy men and women. Sackett JR; Schlader ZJ; O'Leary MC; Chapman CL; Johnson BD Exp Physiol; 2018 May; 103(5):714-727. PubMed ID: 29527752 [TBL] [Abstract][Full Text] [Related]
12. [Hemorheologic and blood cell changes in humans during partial immersion, with a therapeutic method, in 38 C water]. Digiesi V; Cerchiai G; Mannini L; Masi F; Nassi F Minerva Med; 1986 Jul; 77(30-31):1407-11. PubMed ID: 3736976 [TBL] [Abstract][Full Text] [Related]
13. Effects of short-term dry immersion on bone remodeling markers, insulin and adipokines. Linossier MT; Amirova LE; Thomas M; Normand M; Bareille MP; Gauquelin-Koch G; Beck A; Costes-Salon MC; Bonneau C; Gharib C; Custaud MA; Vico L PLoS One; 2017; 12(8):e0182970. PubMed ID: 28806419 [TBL] [Abstract][Full Text] [Related]
14. [HEART RHYTHM VARIABILITY ANALYSIS AND ASSESSMENT OF THE SPINAL PAIN SYNDROME DURING DRY IMMERSION]. Sun I; Voronkov YI; Ardashev VN; Glukhova SI Aviakosm Ekolog Med; 2015; 49(3):33-7. PubMed ID: 26292423 [TBL] [Abstract][Full Text] [Related]
15. Head-out immersion in the non-human primate: a model of cardiovascular deconditioning during microgravity. Cornish KG; Hughes K; Dreessen A; Olguin M Aviat Space Environ Med; 1999 Aug; 70(8):773-9. PubMed ID: 10447051 [TBL] [Abstract][Full Text] [Related]
16. Human physiological responses to immersion into water of different temperatures. Srámek P; Simecková M; Janský L; Savlíková J; Vybíral S Eur J Appl Physiol; 2000 Mar; 81(5):436-42. PubMed ID: 10751106 [TBL] [Abstract][Full Text] [Related]
17. The Effect of Five-Day Dry Immersion on the Nervous and Metabolic Mechanisms of the Circulatory System. Rusanov VB; Pastushkova LK; Larina IM; Chernikova AG; Goncharova AG; Nosovsky AM; Kashirina DN; Brzhozovsky AG; Navasiolava N; Kononikhin AS; Kussmaul AR; Custaud MA; Nikolaev EN Front Physiol; 2020; 11():692. PubMed ID: 32754043 [TBL] [Abstract][Full Text] [Related]
18. Effects of three days of dry immersion on muscle sympathetic nerve activity and arterial blood pressure in humans. Iwase S; Sugiyama Y; Miwa C; Kamiya A; Mano T; Ohira Y; Shenkman B; Egorov AI; Kozlovskaya IB J Auton Nerv Syst; 2000 Mar; 79(2-3):156-64. PubMed ID: 10699647 [TBL] [Abstract][Full Text] [Related]
19. Renal sodium retention does not occur during the luteal phase of the menstrual cycle in normal women. Bisson DL; Dunster GD; O'Hare JP; Hampton D; Penney MD Br J Obstet Gynaecol; 1992 Mar; 99(3):247-52. PubMed ID: 1534995 [TBL] [Abstract][Full Text] [Related]
20. Cardiovascular changes induced by cold water immersion during hyperbaric hyperoxic exposure. Boussuges A; Molenat F; Grandfond A; Regnard J; Wolf JP; Galland F; Robinet C Clin Physiol Funct Imaging; 2007 Sep; 27(5):268-74. PubMed ID: 17697022 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]